Core Course - 9

Elements of Modern Physics

Problem Set -2 (Unit 2)

1. Normalize the following wave functions.

(i)
$$\psi(x) = A \cos x$$
 for $|x| \le \frac{\pi}{2}$

= 0 otherwise.

(ii)
$$\psi(x) = A \sin \frac{n\pi x}{l}$$
 for $-\frac{l}{2} \le x \le \frac{l}{2}$

= 0 otherwise.

(iii)
$$\psi(x) = A \exp(-\alpha x^2)$$
 for $-\infty \le x \le \infty$ (iv) $\psi(r) = A \exp(-r/a_0)$ for $0 \le r \le \infty$

v)
$$\psi(r) = A \exp(-r/a_0)$$
 for $0 < r < \infty$

(v)
$$\psi(\phi) = A \exp(im\phi)$$
 for $0 \le \phi \le 2\pi$

- 2. The wave function of a particle is described as $\psi(x) = \sqrt{2}x$ for 0 < x < 1 and $\Psi(x) = 0$ elsewhere. Find the probability of finding the particle in the regions 0 < x < 0.5 and 0.5 < x < 1. What is the average value of its position?
- **3.** Given \hat{A} and \hat{B} are two linear operators. Show that their sum and product i.e. $\hat{A} + \hat{B}$ and $\hat{A}\hat{B}$ are also linear.
- **4.** Check whether the following operators are linear.

(i)
$$\hat{A} = \frac{d}{dx}$$

(i)
$$\hat{A} = \frac{d}{dx}$$
 (ii) $\hat{A}f(x) = f^*(x)$ (iii) $\hat{A}f(x) = -f(x)$

(iii)
$$\hat{A}f(x) = -f(x)$$

- (iv) Momentum operator represented by $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$
- (v) Hamiltonian operator represented by $\widehat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$
- 5. Verify the following identities related to the commutator of operators.

(i)
$$\left[\hat{B}, \hat{A}\right] = -\left[\hat{A}, \hat{B}\right]$$

(ii)
$$\left[\hat{A} + \hat{B}, \hat{C}\right] = \left[\hat{A}, \hat{C}\right] + \left[\hat{B}, \hat{C}\right]$$

(iii)
$$\left[\hat{A}, \hat{B}\hat{C}\right] = \left[\hat{A}, \hat{B}\right]\hat{C} + \hat{B}\left[\hat{A}, \hat{C}\right]$$

(iv)
$$\left[\hat{A},\left[\hat{B},\hat{C}\right]\right] + \left[\hat{B},\left[\hat{C},\hat{A}\right]\right] + \left[\hat{C},\left[\hat{A},\hat{B}\right]\right] = 0$$

6. Evaluate the following commutation brackets.

(i)
$$\left[\hat{x}, \frac{\partial}{\partial x}\right]$$

(ii)
$$[\hat{x}, \hat{p}_x]$$

(iii)
$$\widehat{x^2}$$
, \hat{p}_x

(iv)
$$[\widehat{x^n}, \widehat{p}_x]$$

(i)
$$\left[\widehat{x}, \frac{\partial}{\partial x} \right]$$
 (ii) $\left[\widehat{x}, \widehat{p}_x \right]$ (iii) $\left[\widehat{x^2}, \widehat{p}_x \right]$ (iv) $\left[\widehat{x^n}, \widehat{p}_x \right]$ (v) $\left[\widehat{x}, \widehat{p_x^2} \right]$ (vi) $\left[\widehat{x}, \widehat{p_x^n} \right]$

$$(\text{vii}) \left[\hat{p}_x, \ \hat{p}_y \right] \quad (\text{viii}) \left[\widehat{H}, \ \hat{p}_x \right] \qquad (\text{ix}) \left[\hat{p}_x, \ e^{\hat{x}} \right] \qquad (\text{x}) \left[\hat{x}, \ e^{\widehat{p}_x} \right] \qquad (\text{xi}) \left[\hat{x}, \ \sin \hat{p}_x \right]$$

(ix)
$$[\hat{p}_x, e^{\hat{x}}]$$

$$(x)\left[\widehat{x},\ e^{\widehat{p}_{\widehat{x}}}\right]$$

(xi)
$$[\hat{x}, \sin \hat{p}_x]$$

(xii)
$$\left[\widehat{L_x}, \widehat{L_y}\right]$$

$$(xii) \left[\widehat{L_x}, \ \widehat{L_y} \right] \quad (xiii) \left[\widehat{L_y}, \ \widehat{L_z} \right] \quad (xiv) \left[\widehat{L_z}, \ \widehat{L_x} \right] \quad (xv) \left[\widehat{L^2}, \ \widehat{L_x} \right]$$

(xiv)
$$\widehat{L_z}$$
, $\widehat{L_x}$

(xv)
$$[\widehat{L^2}, \widehat{L_x}]$$

(xvi)
$$[\widehat{L^2}, \widehat{L_v}]$$

(xvii)
$$\left[\widehat{L^2}, \ \widehat{L_z}\right]$$

- 7. Check whether the following operators are Hermitian.
 - (i) Position operator: \hat{x}

(ii) Momentum operator: $\hat{p}_{\chi} = -i\hbar \frac{\partial}{\partial x}$

(iii) $\hat{A} = (\hat{x}\hat{p}_x + \hat{p}_x\hat{x})$

(iv) $\hat{B} = (\hat{x}\hat{p}_r - \hat{p}_r\hat{x})$

- (v) Hamiltonian operator: $\widehat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$
- (vi) The third component of angular momentum: $\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$
- **8.** Given, operators \hat{A} and \hat{B} both are Hermitian.
 - (i) Prove that $\hat{A} + \hat{B}$ is also Hermitian.
 - (ii) $\hat{A}\hat{B}$ is Hermitian if and only if the operators commute.
 - (iii) Is the commutator i.e. $[\hat{A}, \hat{B}]$ Hermitian?
- **9.** Check whether the following wave functions are well-behaved?

(i)
$$\psi(x) = \exp(-\alpha x^2)$$
, $\alpha > 0$

(ii)
$$\psi(x) = \exp(\alpha x^2)$$
, $\alpha < 0$

(iii)
$$\psi(x) = \exp(kx)$$
, $k > 0$

(iv)
$$\psi(x) = \exp(-kx)$$
, $k > 0$

(v)
$$\psi(x) = \exp(ikx)$$
, k real

(vi)
$$\psi(x) = \cos kx$$
, k real

(vii)
$$\psi(x) = Ax \exp(x^2) [-\infty < x < \infty \text{ in all cases}]$$

- **10.** Find eigenfunction of the following operators:
 - (i) Momentum operator represented by $\hat{p}_x = -i\hbar \frac{\partial}{\partial x}$
 - (ii) Free particle Hamiltonian operator described by $\widehat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$
 - (iii) The third component of angular momentum: $\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$
- 11. Show that $\psi(x) = \exp(ikx)$ is an eigenfunction of the momentum operator. What is the corresponding eigenvalue? What is the expectation value of the momentum in this state? Is $\psi(x)$ simultaneous eigenfunction of the Hamiltonian operator for a free particle? If yes, find corresponding energy eigenvalue.
- **12.** Show that the eigenvalues of Hermitian operators are real and the eigenfunctions corresponding to different eigenvalues are orthogonal.
- 13. Consider a wave function given by the following Gaussian distribution

$$\psi(x) = A e^{-\alpha(x-a)^2},$$

where A, α and α are positive real constants.

- (i) Find out the normalization constant A.
- (ii) Find the probability current density.
- (iii) Find $\langle x \rangle$, $\langle x^2 \rangle$ and hence the uncertainty in determination of x i.e. Δx .
- 14. Consider the wave function

$$\psi(x,t) = A e^{-\alpha|x|} e^{-i\omega t}$$

where A, α and α are positive real constants.

- (i) Find out the normalization constant A.
- (ii) Find $\langle x \rangle$, $\langle x^2 \rangle$ and hence the standard deviation of x.
- **15.** Consider the following wave function

$$\psi(x) = A e^{-\alpha x^2},$$

where A and α are positive real constants.

- (i) Find out the normalization constant A.
- (ii) Calculate the expectation values of x, x^2 , p and p^2 .
- (iii) Find Δx and Δp and show that their product is consistent with the uncertainty principle.
- **16.** The wave function for a particle confined in a one dimensional potential box $(0 \le x \le l)$ is given by

$$\psi(x) = A \sin \frac{n\pi x}{l}, \qquad n = 1, 2, 3, \dots$$

- (i) Find out the normalization constant A.
- (ii) What is the probability that the particle can be found in the region 0 < x < l/2.
- (iii) Calculate the expectation values of x, x^2 , p and p^2 .
- (iv) Find Δx and Δp and show that their product is consistent with the uncertainty principle.
- (v) Is this wave function an eigenfunction of the corresponding Hamiltonian operator? If yes, find the energy eigenvalues.
- 17. Consider the following wave function in radial coordinate (α is a positive constant)

$$\psi(r) = A e^{-r/a}$$

- (i) Calculate the normalization constant A.
- (ii) Find the expectation value of the radial position r.
- (iii) What is the probability that the system can be found at $0 < r < \alpha$?
- 18. Show that Schrödinger's equation is linear. (Or, Given ψ_1 and ψ_2 are two solutions of Schrödinger's equation. Show that the linear combination of ψ_1 and ψ_2 will the general solution of Schrödinger's equation.)
- 19. A free particle wave function is given by $\psi(x,t) = A \exp i(kx \omega t)$, A constant. Find the probability current density and show that wave function is consistent with the equation of continuity.
- **20.** Consider a wave function $\psi(r) = e^{ikr}/r$, symbols have their usual meanings. Find the probability current density.
- **21.** A particle in a stationary state with energy E_0 is at ψ_0 at time t=0. After how much time will the particle again come back to the same state is at ψ_0 ?
- **22.** The normalized wave function of a particle is given by $\psi = \frac{1}{\sqrt{3}}\psi_1 + \frac{2}{\sqrt{3}}\psi_2$ where ψ_1 and ψ_2 represent two orthonormal eigenstates of the Hamiltonian operator with energy eigenvalues E and E

respectively. Find the probabilities that the particle is in the states ψ_1 and ψ_2 . Also find the expectation value of the energy when it is in the state ψ .

- 23. A particle has two eigenstates ψ_1 and ψ_2 with the corresponding energy being E_1 and E_2 respectively. The particle has respectively 40% and 60% probabilities of being found in the states ψ_1 and ψ_2 . Write down the wave function of the particle and obtain the average energy of the particle.
- **24.** A system has two possible energy eigenvalues E_0 and $2E_0$ with corresponding eigenstates ψ_0 and ψ_1 respectively. The particle, at an instant, is in a state ψ such that it has an expectation value of energy $\frac{3}{2}E_0$. Find ψ . What is the value of ψ after a time t has elapsed?
- **25.** The expectation value of an operator A is defined as $\langle A \rangle = \langle \psi | A | \psi \rangle$. Show that (H is Hamiltonian operator)

$$\frac{d}{dt}\langle A\rangle = \langle \frac{\partial A}{\partial t}\rangle + (i\hbar)^{-1}\langle [A, H]\rangle$$

26. Using the relation in Prob. 25 or otherwise, prove the following relations (Ehrenfest Theorems)

$$\frac{d}{dt}\langle x\rangle = \frac{\langle p_x\rangle}{m}$$

$$\frac{d}{dt}\langle p_x\rangle = -\langle \frac{\partial V}{\partial x}\rangle$$

Review of CU Exam. Papers:

CU - 2019

- 1. Find the eigenstate of $i \frac{d}{dx}$. [2]
- 2. Show that the eigenvalues corresponding to Hermitian operators are real. [2]
- 3. \hat{A} and \hat{B} are two Hermitian operators. Comment on the hermiticity of the commutator $[\hat{A}, \hat{B}]$. [2]
- 4. Consider 1D harmonic oscillator potential $V(x) = m\omega^2 x^2/2$. The ground state wave function is given by

$$\psi(x) = \left(\frac{\alpha}{\pi}\right)^{1/4} e^{-\alpha x^2/2}$$
, where $\alpha = \frac{m\omega}{\hbar}$.

Calculate the expectation value of kinetic energy and potential energy and hence show that ground state energy is given by $E_0 = \hbar \omega/2$. [2+2+1]

5. For any operator \hat{A} with no explicit time dependence, prove that

$$\frac{d}{dt}\langle \hat{A}\rangle = \frac{i}{\hbar}\langle \left[\hat{A}, \hat{H}\right]\rangle$$

Hence prove that

$$\frac{d}{dt}\langle \hat{p}_x \rangle = -\langle \frac{\partial V(\hat{x})}{\partial x} \rangle$$

where \hat{p}_x is the linear momentum, and the potential is $V(\hat{x})$. [3+2]

- 6. What is the implication of the relation $[\hat{A}, \hat{B}] = 0$, where \hat{A} and \hat{B} are two quantum mechanical observables? [2]
- 7. The Hamiltonian of a 1D system is given by

$$\widehat{H} = \frac{\widehat{p}_x^2}{2m} + V(\widehat{x})$$

Show that $\left[\hat{x}, \left[\hat{x}, \hat{H}\right]\right] = -\hbar^2/m$. [3]

- 8. If $[\hat{A}, \hat{B}] = 0$ and ψ is an eigenvector of \hat{A} with eigenvalue λ , then show that $\hat{B}\psi$ is also an eigenvector of \hat{A} with the same eigenvalue λ . Will ψ be an eigenvector of \hat{B} ? [2+1]
- 9. Examine whether the operator \hat{B} is linear or not, where $\hat{B}\psi(x) = \psi^*(x)$. [2]

CU - 2018

1. $\psi_1(x)$ and $\psi_2(x)$ are eigenstates of the Hamiltonian with eigenvalues E_1 and E_2 . Is

$$\psi(x,t) = c_1 \psi_1(x) e^{-iE_1 t/\hbar} + c_2 \psi_2(x) e^{-iE_2 t/\hbar}$$

a stationary state? [2]

- 2. What is the physical significance of the fact that an operator commutes with Hamiltonian operator? [2]
- 3. The wave function of particle bound inside a one dimensional box is given by $\psi(x) = A \cos kx + B \sin kx$. If the two ends of the box are at x = -a and x = +a respectively, then write down the appropriate boundary conditions and modify the wave function accordingly. [2]
- 4. What do you mean by square integrable wave function? Cite an example of a wave function which is not square integrable. [2]
- 5. A particle is represented by

$$\psi(x) = A(a^2 - x^2), -a \le x \le a$$
$$= 0. \text{ otherwise}$$

where A is the normalization constant. Determine the uncertainty in the position of the particle in terms of A and α . [4]

- 6. A system has two possible energy values E_0 and $2E_0$ and at a certain instant, the system is in a state in which the expectation value of energy is $3E_0/2$. Calculate the wave function in this state, given that ψ_0 and ψ_1 are the wave functions corresponding to the two possible energy values E_0 and $2E_0$ respectively. What is the wave function after a time t has elapsed? Assume that the eigenvalues E_0 and $2E_0$ are non-degenerate and the relative phase between the states ψ_0 and ψ_1 is θ . [4]
- 7. For a free particle, show that each energy eigenvalue is doubly degenerate. [2]
- 8. Show that the momentum operator is a Hermitian operator. [3]
- 9. Show that if H is Hermitian then e^{iH} is unitary.

10. Show that any operator A which has no explicit time dependence, follows

$$\frac{d}{dt}\langle A\rangle = \frac{i}{\hbar}\langle [A, H]\rangle$$

CU - 2017

- 1. Starting from the basic commutation relation $[x, p_x] = i\hbar$, one can show that $[x, p_x^n] = i\hbar n p_x^{n-1}$. Using this result or in other way, prove that $[\hat{x}, \sin \hat{p}_x] = i\hbar \cos \hat{p}_x$. [2]
- 2. Write down the time independent Schrodinger equation for a particle moving in 1 D. If there is no force acting on it, find out the solution. If the particle is constrained to move such that 0 < x < L, what are the boundary conditions of the wave function? [3]
- 3. Using the commutation relation for the components of the momentum and position operators, show that the components of the angular momentum operator L satisfy $[L_x, L_y] = i\hbar L_z$. [4]
- 4. Show that for an operator A with no explicit time dependence

$$\frac{d}{dt}\langle A\rangle = \frac{i}{\hbar}\langle [A, H]\rangle$$

Hence, prove that

$$\frac{d}{dt}\langle p_x\rangle = -\langle \frac{\partial V}{\partial x}\rangle$$

for a particle moving in x direction with momentum p_x under the potential V(x). [3+3]

5. Prove Ehrenfest theorem in one dimension [4]

$$\frac{d}{dt}\langle x\rangle = \frac{\langle p_x\rangle}{m}$$

CU - 2016

1. A particle at t = 0 is described by wave function

$$\Psi(x) = A e^{-\alpha x^2} e^{ik_0 x}$$

Find $\langle x \rangle$. [3]

- 2. A particle can be in two different states given by orthonormal wave functions ψ_1 and ψ_2 . If the probability of being in state ψ_1 is 1/3, find out the normalized wave function for the particle. [2]
- 3. Find the explicit expression of the operator $\left(A\frac{d}{dA}\right)^2$. [3]
- 4. Stating from the basic commutation relation $[x, p_x] = i\hbar$, prove that $[x, p_x^n] = i\hbar n p_x^{n-1}$. [2]
- 5. Show that the momentum operator $p_x = -i\hbar \frac{\partial}{\partial x}$ is Hermitian in nature. [4]
- 6. What is the physical significance of $[x, p_y] = 0$? [1]

CU - 2015

- 1. Show that if ψ be an eigen function of the operator \hat{A} with eigenvalue λ , then it is also eigenfunction of e^A with eigen value e^{λ} . [2]
- 2. Examine whether the operator \hat{B} is linear or not, where $\hat{B}\psi(x) = \psi^*(x)$. [2]
- 3. Show that the operator $\hat{Q} = \frac{1}{2}(\hat{x}\hat{p}_x + \hat{p}_x\hat{x})$ is Hermitian. [3]
- 4. Show that if *F* is Hermitian, $U = e^{iF}$ is Hermitian. [1]
- 5. What is the momentum representation of the position operator \hat{x} ? Show that this representation satisfies the position-momentum commutation relation. [2+2]
- 6. For any operator \hat{A} which has no explicit time dependence, follows

$$\frac{d}{dt}\langle \hat{A} \rangle = \frac{i}{\hbar} \langle [\hat{H}, \hat{A}] \rangle_t$$

hence prove that

$$\frac{d}{dt}\langle P_x\rangle = -\langle \frac{dV(x)}{dx}\rangle$$

for any particle moving in x direction with momentum P and under the potential V(x). [3]

CU - 2014

1. Calculate the normalization constant and probability current density for a wave function given by (at t = 0) [3]

$$\psi(x) = A e^{-\alpha x^2/2} e^{ikx}$$

- 2. Prove that $\exp[i(AB BA)]$ is a Hermitian operator if A and B are Hermitian operators. [3]
- 3. Prove the relation [A, BC] = B[A, C] + [A, B]C and using this evaluate $[p_x, x^2]$. [2+2]

CU - 2013

- 1. Let the state of a system be denoted by $|\psi\rangle = a_1|\phi_1\rangle + a_2|\phi_2\rangle$. If the probability that the system is in the state $|\phi_1\rangle$ is double of that in $|\phi_2\rangle$, find out a_1 and a_2 . [2]
- 2. If the operators \hat{A} and \hat{B} are Hermitian then is the operator $[\hat{A}, \hat{B}]$ Hermitian or not? [2]
- 3. A triangle hat wave function is given by

$$\psi(x) = A \frac{x}{a}; \ x \in [0, a]$$

$$= A \frac{(b - x)}{b - a}; \ x \in [a, b]$$

$$= 0: \text{ otherwise}$$

where A, a and b are constants.

- (i) Sketch the wave function.
- (ii) Determine the normalization constant A in terms of a and b. Also calculate $\langle x \rangle$. [2+5]
- 4. Show that if two operators commute, they have common eigenfunctions. [2]

5. The parity operator P operates on a function f(x) in the following way: Pf(x) = f(-x). Given that P and the Hamiltonian H commute and $\psi(x)$ is a solution of the time-independent Schrödinger equation, show that $\psi(-x)$ is a solution too with the same eigen-energy as $\psi(x)$. Find out the eigenvalues of the parity operator. [2+2]

CU - 2012

- 1. Show that $\exp(ikx)$ is an eigenfunction of the momentum operator in one dimension. Find out the corresponding eigenvalue. [2]
- 2. A particle can be in two different states given by orthonormal wave functions ψ_1 and ψ_2 . If the probability of being in state ψ_1 is 1/3, find out the normalized wavefunction for the particle. [2]
- 3. Calculate the normalization constant and the probability density for a wave function given by (at t = 0)

$$\psi(x) = A \exp\left(-\frac{\sigma^2 x^2}{2}\right) \exp(ikx)$$

- 4. Prove that [A, BC] = B[A, C] + [A, B]C
- 5. Prove the following commutator relations: [5]

(i)
$$\left[L_x, L_y\right] = i\hbar L_z$$
 (ii) $\left[L_x, L_z\right] = -i\hbar L_y$ (iii) $\left[L_x, L^2\right] = 0$

(ii)
$$[L_x, L_z] = -i\hbar L_x$$

(iii)
$$[L_x, L^2] = 0$$

CU - 2011

- 1. If two operators \hat{A} and \hat{B} commute, show that they will have simultaneous eigenfunctions. [2]
- 2. Show that the eigenvalues of a Hermitian operator are real. [2]
- 3. If $\widehat{H} = \frac{p^2}{2m} + V(x)$, show that $\left[x, \left[x, \widehat{H}\right]\right] = -\frac{\hbar^2}{2m}$. [2]
- 4. A one-dimensional wave function is given by $\psi(x) = \sqrt{a}e^{-ax}$, find the probability of finding the particle between x = 1/a and x = 2/a. [2]
- 5. For the wave function $\psi = A \exp i(ax \omega t)$, find the probability current density. (A = const.) [2]
- 6. Find the constant B which makes $e^{-\alpha x^2}$ an eigenfunction of the operator $\left(\frac{d^2}{dx^2} Bx^2\right)$. [2]
- 7. Evaluate $\left[\hat{L}_x^2 + \hat{L}_y^2, \hat{L}_z^2\right]$. [2]