
D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

 Doing Maths using SymPy

 Dr. Susanta Mandal

Assistant Professor
Department of Mathematics

St. Paul’s Cathedral Mission College

1

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Contents
Chapter - 1: Symbolic Math using SymPy

 1.1 Introduction

 1.2 Functions, methods, modules, and packages of python

 1.3 Some Common External Packages

 1.4 Installation of External Packages

 1.5 How to import Packages in Python Source Files

 1.6 Uses of External Package SymPy

 1.7 Symbols and Symbolic Expressions

 1.7.1. The way of defining variable/ variables

 1.7.2. The way of defining symbolic expressions/ functions

 1.7.3. Difference between a variable in core python and a symbolic

 variable in SymPy

 1.8 Symbolic Computation vs. Numerical Computation

 1.9. Use of Python Variables and Symbolic Variables

 1.10. Working with Symbolic expressions

 1.11. Mathematical Manipulation of Symbolic Expressions/ functions

 1.12. Pretty Printing

 1.13. Solving Equations using SymPy

 1.13.1. Solving a Single Equation

 1.13.2 Solving a Quadratic Equation

 1.13.3 Solving for Several Variables

 1.13.4. Solving Polynomial Nonlinear Equations

2

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

 1.13.5. Solving Transcendental Equations

 1.14. Calculus: Limit, Differentiation and Integration

 1.14.1. Limits and Continuity

 1.14.2. Differentiation of a function

 1.14.3. Integration with SymPy

 1.14.4. Series Expansion with SymPy

 1.14.5. Matrix algebra with SymPy

 1.14.6 Special Matrices in SymPy

 1.14.7. Differential Equations

 1.15. Worked Out Examples

 Exercise-I

 Chapter - 2: Plotting using SymPy

 2.1 Introduction

 2.2 SymPy's Plotting Module

 2.3. Features and Customization

 2.4. Advantages of SymPy Plotting

 2.5. Plotting Expressions Input by the User

 2.6 Worked Out Examples

 Exercise - II

3

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Chapter - 1

Symbolic Math using SymPy

1.1 Introduction
Python is composed of a core language along with an extensive library of additional software
packaged in modules. Many of these modules are included with the standard Python
distribution, offering extra functionality for handling various system tasks. Others provide
more specialized features that might not be relevant to every user. These modules function
like a library, allowing us to use them as needed. In Python, external packages (also known
as third-party packages or libraries) are collections of pre-written code that we can install
and use in our own projects. These packages are not part of Python’s standard library, so they
need to be installed separately.

1.2 Functions, methods, modules, and packages of python
In Python, modules, methods, functions, and packages serve distinct purposes in
programming, though they often work together in code.

Here we will demonstrate briefly their differences, with examples:

(a) Function: A function is a reusable block of code that performs a specific task.
Functions are defined using the def keyword. Python functions are extensively discussed
in chapter-9. The following table highlights how to define and use functions within a
python code.

Function Creation Use of function in another place

def greet(name):
 return f"Hello, {name}!"

print(greet("Anna"))
Output: Hello, Anna!

4

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

(b) Module: A module is a single Python file (with a .py extension) that contains
definitions of variables, functions, and classes that can be used in other Python programs.
Specially modules help organize code into separate, reusable files.

Module Creation Importing and use of the module in another file

create a python file
math_operations.py
def user_ad(a, b):
 return a + b
def user_subt(a,b):
 return a - b

import math_operations
result1 = math_operations.user_ad(8,3)
Output: 11
result2 =

math_operations.user_subt(8,3)
Output: 5

(c) Method: It is well-known that python is an object-based language. A method is a
function that is associated with an object or class. Methods are defined inside classes
and operate on instances of that class (they are essentially functions that belong to an
object).

 Class Creation Use of Class

 def __init__(self, name):
 self.name = name

def greet(self):
 return f"Hello,
{self.name}!"
person = Person("Anna")
print(person.greet())

Output: Hello, Anna!

(d) Package: A package is a collection of modules organized in a directory structure. A
directory is recognized as a package when it contains an __init__.py file (which
may be empty or have initialization code). Packages allow us to organize multiple
modules into a structured namespace.

 Example: Suppose we have a package named my_math with the following structure:

 my_math/
 __init__.py
 operations.py
 constants.py

● In operations.py, the actual code is given below:

 # operations.py

 def add(a, b):

 return a + b

5

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

● In constants.py, the actual code is given below:

 # constants.py

 PI = 3.14159

● To use the my_math package, the actual lines of code are given below:

 from my_math import operations, constants

 result = operations.add(2, 3) # Output: 5

 pi_value = constants.PI # Output: 3.14159

1.3 Some Common External Packages

An overview of common external packages and their uses are presented in the following table:

Table: External packages and their Uses

Broad Are Name of
Packages

Descriptions

Data Science
& Machine
Learning

NumPy NumPy provides support for large, multi-dimensional
arrays and matrices, along with a collection of
mathematical functions to operate on these arrays. It is
essential for scientific computing.

Pandas Pandas is used for data manipulation and analysis,
providing data structures like DataFrames to handle
structured data. It's a must-have for data science tasks.

Scikit-Learn It is a machine learning library that includes simple
and efficient tools for predictive data analysis, such as
classification, regression, clustering, and
dimensionality reduction.

TensorFlow This is an open-source deep learning framework
developed by Google. It's widely used for building
and training neural networks, especially for
large-scale applications.

PyTorch PyTorch is another deep learning framework, popular
in academia and industry for building and
experimenting with neural networks. Known for its
dynamic computation graph and ease of use.

Matplotlib &
Seaborn

It is a plotting library that makes it easy to create
static, animated, and interactive visualizations in
Python. Often used alongside Pandas for data
visualization.

6

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Web
Development

Flask It is a lightweight web framework suitable for
building small to medium-sized applications. Its
simplicity and flexibility make it popular for RESTful
APIs.

Requests It simplifies HTTP requests in Python, making it easy
to send and receive data from web APIs. Great for
web scraping and REST API interactions.

Data
Visualization

Plotly It is popular for interactive, web-based visualizations.

Bokeh It creates interactive and real-time visualizations.

1.4 Installation of External Packages

External packages for python are usually installed via pip. The general instruction to install
external packages are given below:

(a) Installation for single package:
 pip install package_name

(b) Installation for a list of packages such as numpy, pandas and scikit-learn
 pip install numpy pandas scikit-learn

Using external packages can significantly accelerate your development process, providing
specialized functions and utilities that are widely used and tested by the community.

1.5 How to import Packages in Python Source Files

Packages are included using the import statement. We can import a whole package, a specific
module from a package, or specific functions or variables.

● Code for importing an entire package: import my_math

● Code for importing specific modules from a package:

from my_math import specific_module_name

● Code for importing specific functions or variables from a module within a
package:

from my_math.operations import add
from my_math.constants import PI

Each of these imports allows code reuse, modularity, and separation of concerns, helping
make Python code more organized and maintainable.

1.6 Uses of External Package SymPy

SymPy is a powerful tool for symbolic computation in python. It is essentially a Python
library for symbolic mathematics, offering robust tools for algebraic manipulation, calculus,
equation solving, and many more. Its functionality is valuable across many fields, from

7

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

elementary algebra, symbolic simplifications and equation solving to calculus, linear algebra,
and plotting. SymPy also includes subpackages to deal with advanced and specialized topics
such as statistics, category theory, quantum logic ect. Unlike numerical computation libraries
like NumPy, SymPy focuses on exact, symbolic computation rather than approximate,
numerical results.

This section introduces the basic functionality of the SymPy (SYMbolic PYthon) library.
Unlike numerical computation, which deals with specific numbers, symbolic computation
focuses on processing and transforming general variables. The SymPy homepage
(https://www.sympy.org/) offers comprehensive and up-to-date documentation for the library.
While symbolic calculations are significantly slower than floating-point operations (e.g.,
symbolic calculations with decimals), they are a valuable tool for preparing code and
performing symbolic tasks. Occasionally, symbolic operations are used in simulations to
derive the most efficient numerical code before execution.

1.7 Symbols and Symbolic Expressions
In formation or construction of mathematical expression, we need to define variable/ variables and
this can be done using external package sympy in python. The symbol class in sympy is a
fundamental building block in the SymPy library, representing symbolic variables in mathematical
expressions. It allows us to define variables that can be manipulated algebraically, rather than being
assigned a specific numerical value.

1.7.1. The way of defining variable/ variables

To use the symbol class, we first import it from the SymPy library such as:
 from sympy import Symbol

The symbolic variables are then defined in the following way.

For single variable For more than one variable

from sympy import symbols
x = symbols('x')

#Here, ‘x’ is the name of the symbolic
variable.

from sympy import symbols
x,y,... = symbols('x,y,...’)

Here, ‘x’ and “y” are the names of the
symbolic variables.

We can use this symbol in algebraic expressions and perform various symbolic operations.

Remarks:

1. The name of a symbol is a string that identifies it such as:

z = Symbol('z')
print(z)

Output: z

2. Symbols can have optional assumptions about their properties, such as being positive,

real, or integer:

8

https://www.sympy.org/

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

a = Symbol('a', positive=True)
print(a.is_positive)

Output: True

3. Common assumptions include:

 positive=True: # The symbol is strictly greater than zero
 integer=True: # The symbol represents an integer,
 real=True: # The symbol is a real number

1.7.2. The way of defining symbolic expressions/ functions
We need to define different types of expressions/ functions to express physical problems or
solve mathematical problems. We can create such expressions by defining symbolic
variables. These types of symbolic expressions/ functions can be used to do many types of
mathematical formulation and calculation in a broad sense. Let us show how to define
symbolic expressions/ functions.

Code:
from sympy import * # Importing everything from sympy
x= Symbol('x') # way to define symbolic function
f=x*log(x**2+2)-sin(3*x) # way to define symbolic function
print("Original symbolic function showing as: {}".format(f))

#Output:
Original symbolic function showing as: x*log(x**2 + 2) - sin(3*x)

The Symbolic expressions /functions can be used as an object in a python function or
command. The symbolic function can be used to find limits at a point, differentiation of
function, definite or indefinite integration etc.

1.7.3. Difference between a variable in core python and a symbolic variable in SymPy

Variables occur in both core Python and SymPy. The primary difference between variables in
core Python and symbolic variables in SymPy lies in their nature and purpose. Python
variables are used for storing and manipulating data, whereas SymPy symbols are abstract
representations of mathematical variables used for symbolic computation.

Table: Differences between PythonVariables and SymPy Variables

Python Variables SymPy Variables

9

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

It represents a reference to a value in memory. It represents an abstract mathematical
variable.

It is used for programming and data
manipulation.

It is used for symbolic mathematics and
algebra.

It requires a specific value (e.g., x = 15). It does not require a value
(e.g., x = Symbol('x')).

Operations are numerical or based on data types. Operations are symbolic and algebraic.

x = 7; y = x + 1
(numerical result: 8)

x = Symbol('x'); expr = x + 1 (symbolic
result: x + 1).

Python variable is a built-in functionality. Symbolic variable requires the SymPy
library (from sympy import Symbol).

Examples
1. Python Variable

Code:
x = 7 # Assignment of a value to the variable
y = x + 2 # Numerical computation
print(y) # Printing the content

Output: 9

2. Sympy Symbolic Variable

Code:
from sympy import Symbol #Importing symbol class
x = Symbol('x') # Defines a symbolic variable
y = x + 12 # Creates a symbolic expression
print(y) # Printing the content of y

Output: x + 12

1.8. Symbolic Computation vs. Numerical Computation
Numerical Operations with Python Variables are used to directly perform calculations using
assigned values and limited to specific data types (int, float, etc.).

Example:

Code:
a = 3
b = 4

10

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

result = a * b
print(result)

Output: 12

Symbolic Operations with SymPy Symbols are used to manipulate expressions without
assigning specific values and these are useful for algebra, calculus, and equation solving.

Example:

Code:
from sympy import symbols, expand # Importing section
x, y = symbols('x y') # Defining symbol
expr = (x + y)**2 # Creating expression
expanded_expr = expand(expr) # Use of expand
print(expanded_expr) # Print the output

Output: x**2 + 2*x*y + y**2

1.9. Use of Python Variables and Symbolic Variables

❖ Python Variables are used in the following situations when we need
● general programming tasks.
● specific numerical values for computations.
● procedural or object-oriented logic.

❖ SymPy Symbols are used in the following situations when we
● deal mathematical problem-solving including algebra, calculus, and equation

solving.
● deal with symbolic expressions or formulas.
● prepare efficient numerical code through symbolic analysis.

1.10. Working with Symbolic expressions
After defining variable/ variables, we can construct various types of mathematical functions,
expressions or equations. As for example,

Python Code Output

from sympy import symbols
x = symbols('x')
expr=x**5-7*x**3-2*x**2-19
print(expr)

x**5-7*x**3-2*x**2-19

from sympy import symbols
x, y = symbols('x y')
fx=x**2*y-x*y**2+x*y-1
print(fx)

x**2*y-x*y**2+x*y-1

11

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

from sympy import symbols
x, y = symbols('x y')
gx=x*log(x**2*y-5*x*y+3*x*y**2)
+cos(x+y)
print(gx)

x*log(x**2*y-5*x*y+3*x*y**2)+co
s(x+y)

1.11. Mathematical Manipulation of Symbolic Expressions/ functions
The external package SymPy is a powerful Python library for symbolic mathematics, making
it an excellent tool for tasks like simplifying and reducing the complex mathematical
expressions in simplified forms, the factoring, expanding the mathematical expressions and
substituting in expressions. We are going to demonstrate use of SymPy for these purposes:

11.1. Simplifying the Expressions: Simplification is often used in algebra and calculus to
make equations more manageable or to reduce terms.

Example:

Code:
from sympy import symbols, simplify
x, y = symbols('x y')
expr = (x**2 + 2*x*y + y**2) / (x + y)
simplified_expr = simplify(expr)
print(simplified_expr)

Output: x + y

Here, SymPy recognizes that the expression can be simplified to by canceling terms. 𝑥 + 𝑦

11.2. Factoring Expressions: To factorize expressions, SymPy uses the factor() function.
Example:

Code:
from sympy import symbols, factor
x, y = symbols('x y')
expr = x**2 - 5*x + 6
factored_expr = factor(expr)
print(f"Factored Expression: {factored_expr}")

Output:
Factored Expression: (x - 3)*(x - 2)

11.3. Expanding Expressions: To expand expressions, SymPy uses the expand() function.

Example:

Code:

from sympy import expand
expr = (x + 2)*(x - 3)

12

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

expanded_expr = expand(expr)
print(f"Expanded Expression: {expanded_expr}")

#Output: Expanded Expression: x**2 - x - 6

11.4. Substituting Values: To substitute values into an expression, SymPy uses the subs()
method.

Example:

Code:
expr = x**2 + 2*x + 1
value_substituted = expr.subs(x, 3) # Substitute x = 3
print(f"Expression after substitution: {value_substituted}")

Output: 16

The expression is evaluated at x=3 yielding 16. 𝑥2 + 2𝑥 + 1

Example: Write symbolic expression and then factor it and calculate the value after 𝑥3 − 3𝑥2 + 4
substitution of x=2.

Code:
from sympy import *
x = symbols('x')
expr = x**3 - 3*x**2 + 4
factored = factor(expr)
expanded = expand(factored)
substituted = factored.subs(x, 2)
print(f"Factored: {factored}, Expanded: {expanded},
Substituted (with x=2): {substituted}")

Output:
Factored: (x - 2)**2*(x + 1), Expanded: x**3 - 3*x**2 + 4,
Substituted (with x=2): 0

11.5. Combining Operations: We can combine various operations for more complex
workflows.

Example: Write an expression, factored it, then expand it and calculate the value for 𝑥 = 2
. Print the intermediate result separately.

Code:
from sympy import *
x = symbols('x')
expr = x**3 - 3*x**2 + 4
factored_expr = factor(expr)
expanded_expr = expand(factored_expr)
substituted_value = factored_expr.subs(x, 2)

13

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

print(f"Original Expression: {expr}")
print(f"Factored Expression: {factored_expr}")
print(f"Expanded Back: {expanded_expr}")
print(f"Substitution (x=2): {substituted_value}")

Output:
Original Expression: x**3 - 3*x**2 + 4
Factored Expression: (x - 2)**2*(x + 1)
Expanded Back: x**3 - 3*x**2 + 4
Substitution (x=2): 0

11.6. Working with Multiple Variables: SymPy also works seamlessly with multiple
variables.

Example: Give an example to deal with expressions with two variables.

Code:
from sympy import symbols, factor, expand
x, y = symbols('x y')
expr = x**2 + 2*x*y + y**2
factored_expr = factor(expr)
expanded_expr = expand(factored_expr)
print(f"Factored Expression: {factored_expr}")
print(f"Expanded Expression: {expanded_expr}")

Output:
Factored Expression: (x + y)**2
Expanded Expression: x**2 + 2*x*y + y**2

1.12. Pretty Printing
Pretty Printing in SymPy refers to displaying mathematical expressions in a more human-
readable or formatted manner, similar to how we see them in textbooks or on paper. SymPy
provides the pprint() function and support for LaTeX rendering in Jupyter Notebooks to
achieve this. Here are some use of pprint() presented below

12.1. Use of pprint() for Pretty Printing: The pprint() function in SymPy prints
expressions in a structured format directly in the console.

Example 1: Give an example to deal with Simple Polynomial

Code
from sympy import symbols, pprint
x = symbols('x')
expr = x**2 + 2*x + 1
pprint(expr)

Output:
2
x + 2⋅x + 1

14

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Example 2: Give an example to deal with Fraction

Code:
from sympy import Rational
expr = Rational(3, 4) + Rational(2, 5)
pprint(expr)

Output:
 23
──────
 20

Example 3: Give an example to deal with Nested Expression

Code:
from sympy import sin, cos
x = symbols('x')
expr = sin(x)**2 + cos(x)**2
pprint(expr)

Output:
2 2
sin (x) + cos (x)

12.2. Use of init_printing() for Interactive Environments: In interactive environments
(like Jupyter Notebooks), SymPy can display expressions as LaTeX-rendered output. Use
init_printing() to enable this.

Example 4: Enabling LaTeX Printing

Code
from sympy import init_printing
init_printing() # Enables LaTeX rendering in Jupyter
expr = x**2 + 2*x + 1
expr # Automatically pretty-prints in LaTeX style

Output: 𝑥2 + 2𝑥 + 1

Example 5: (Pretty Printing Matrices) Pretty printing works for matrices as well.

Code:
from sympy import Matrix
matrix = Matrix([[1, 2], [3, 4]])
pprint(matrix)

Output:

⎡1 2⎤
⎢ ⎥
⎣3 4⎦

15

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

1.13. Solving Equations using SymPy
Solving equations with SymPy is straightforward. SymPy provides the solve() function,
which can handle algebraic, transcendental, and systems of equations.It supports both linear
and nonlinear equations and can solve systems of equations as well. When provided with an
expression containing a symbolic variable, such as x, solve() computes the value of that
variable. By default, the function assumes the given expression is set equal to zero, meaning
it finds the value that satisfies this condition.

For example, consider the simple equation . Before using solve(), we must 2𝑥 − 11 = 9
rewrite it so that one side equals zero: . Once in this form, we can apply 2𝑥 − 11 − 9 = 0
the solve() function to determine the value of . Below are examples of solving equations 𝑥
using SymPy.

Example-1: Solve the Linear Equation Solve 2𝑥 − 11 = 9

When we use solve(), it determines that because this value satisfies the equation𝑥 = 10
. The result is returned as a list, since an equation may have multiple 10𝑥 − 11 = 9

solutions, for example, a quadratic equation typically has two solutions, in which case the list
will contain all possible values.

Additionally, solve() can return the result in the form of dictionaries, where each
dictionary contains the variable as a key and its corresponding solution as the value. This
format is particularly useful for solving simultaneous equations with multiple variables, as it
clearly associates each solution with its respective variable.

In SymPy, Eq stands for Equation. It is used to explicitly represent an equation where the
left-hand side (LHS) is equal to the right-hand side (RHS). Syntax for Eq is Eq(lhs,
rhs). Where lhs: Left-hand side of the equation.

rhs: Right-hand side of the equation.

Eq(lhs, rhs) represents lhs = rhs.

For example:

Code:
from sympy import Eq, symbols
x = symbols('x')
equation = Eq(x**2 - 4, 0)
print(equation)

This creates the equation . 𝑥2 − 4 = 0

16

Code:
from sympy import symbols, Eq, solve
x = symbols('x')
eq = 2x-11-9 # Represents x + 2 = 5
solve(eq)

Output: Solution: [10]

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

1.13.1. Solving a Single Equation

Example: Solve the Linear Equation Solve . 𝑥 + 12 = 15

Example: Solve the symbolic equation . 𝑎𝑥 + 𝑏 = 0

Code
a, b = symbols('a b')
eq = Eq(a*x + b, 0)
solution = solve(eq, x)
print(f"Symbolic Solution: {solution}")

Output:
Symbolic Solution: [-b/a]

1.13.2 Solving a Quadratic Equation
In core Python, we determined the roots of the quadratic equation by 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0
using the root formulas and substituting the values of the constants , and c. Now, we'll 𝑎, 𝑏
explore how the SymPy solve() function can find the roots without using manual formula
substitution. Let’s look at an example.
Example: Solving a Quadratic Equation 𝑥2 − 13𝑥 + 40 = 0

Code
from sympy import solve
x = Symbol('x')
eq = Eq(x**2 - 13*x + 40, 0) #Define the Equations Using Eq
solution = solve(eq, x)
print(f"Solution: {solution}")

Output:
Solution: [5, 8]

Here, SymPy finds that the roots of the equation are 5 and 8. 𝑥2 − 13𝑥 + 40 = 0
Example: Solve the Quadratic Equation 𝑥2 + 𝑥 + 1 = 0
We know that the roots of the given equations are complex.
Let’s attempt to find the complex roots of the equation using solve().

Code

17

Code:
from sympy import symbols, Eq, solve
x = symbols('x')
eq = Eq(x + 12, 15) # Represents x + 2 = 5
solution = solve(eq, x)
print(f"Solution: {solution}")

Output: Solution: [3]

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

from sympy import solve
x = Symbol('x')
eq = Eq(x**2 +x + 1, 0) #Define the Equations Using Eq
solution = solve(eq, dict=True)
print(f"Solution: {solution}")

Output:
Solution: [{x: -1/2 - sqrt(3)*I/2}, {x: -1/2 + sqrt(3)*I/2}]

Here, ‘I’ indicates a symbol to denote an imaginary component.

Example: Solve the Quadratic Equation . 𝑥2 + 6𝑥 + 5 = 0

Here we solve the equation without creating an equation using Eq.

Code
from sympy import solve
x = Symbol('x')
expr = x**2 +6*x + 5 #Define the expression
solution = solve(expr, dict=True)
print(f"Solution: {solution}")

Output:
Solution: [{x: -5}, {x: -1}]

First, we define the symbol x and create an expression representing the quadratic equation
. Then, we call the solve() function with this expression. The second 𝑥2 + 6𝑥 + 5 = 0

argument, dict=True, ensures that the solutions are returned as a list of Python dictionaries.
Each dictionary contains the symbol as a key and its corresponding solution as the value. If
no solutions exist, an empty list is returned. In this case, the roots of the given equation are -5
and -1.

1.13.2 Solving for Several Variables

To solve a system of equations using SymPy, you can utilize the solve() function in
conjunction with Eq. Let’s look at a step-by-step guide:

1. Import Necessary Functions:
 from sympy import symbols, Eq, solve

2. Define the Variables:
x, y = symbols('x y')

3. Define the Equations Using Eq:
eq1 = Eq(2*x + y, 10)

 eq2 = Eq(x - y, 2)
4. Solve the System:

solution = solve((eq1, eq2), (x, y))

5. Display the Solution:
print(solution)

Complete Example:

18

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

from sympy import symbols, Eq, solve
x, y = symbols('x y') # Define the variable
eq1 = Eq(2*x + y, 10) # Define the equations
eq2 = Eq(x - y, 2)
Solve the system of equations
solution = solve((eq1, eq2), (x, y))
Display the solution
print(solution)

Output:
{x: 4, y: 2}

Example: Solve a system of linear equations: 𝑥 + 𝑦 = 15; 𝑥 − 𝑦 = 11

Code
y = symbols('y')
Defining the system of equations
eq1 = Eq(x + y, 15)
eq2 = Eq(x - y, 11)
solution = solve([eq1, eq2], (x, y))
print(f"Solution: {solution}")

Output:
Solution: {x: 13, y: 2}

1.13.4. Solving Polynomial Nonlinear Equations

A nonlinear equation is an equation where the variable appears with exponents other than 1,
or within transcendental functions like exponentials, logarithms, or trigonometric functions.
Unlike linear equations, nonlinear equations may have multiple or no solutions and often
require numerical or symbolic techniques to solve. SymPy provides powerful tools to solve
nonlinear equations, including solve() for symbolic solutions and nsolve() for
numerical approximations. A polynomial nonlinear equation is an equation where the
variable appears with exponents greater than 1 (quadratic, cubic, quartic, etc.). These
equations can often be solved exactly using algebraic methods. SymPy provides the
solve() function to find symbolic solutions for polynomial equations. A simultaneous
polynomial nonlinear system consists of multiple polynomial equations that need to be solved
together. SymPy solve() or nonlinsolve() can be used to find exact solutions.

Example: Solve a system of nonlinear equations: 𝑥2 + 𝑦2 = 25; 𝑥 + 𝑦 = 7

Code(using solve()):
from sympy import symbols, Eq, solve
x, y = symbols('x y')
Defining the system of equations

19

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

eq1 = Eq(x**2 + y**2, 25)
eq2 = Eq(x + y, 7)
solution = solve([eq1, eq2], (x, y))
print(f"Solution: {solution}")

Output: Solution: [(3, 4), (4, 3)]

Example: Solve a system of nonlinear equations: 𝑥2 + 𝑦2 = 25; 𝑥2 − 𝑦2 = 7

Code (using nonlinsolve()):
from sympy import symbols, Eq, nonlinsolve
x, y = symbols('x y')
Defining the system of equations
eq1 = Eq(x**2 + y**2, 25)
eq2 = Eq(x**2 - y**2, 7)
solutions_set = nonlinsolve([eq1, eq2], [x, y])
print("Solutions (nonlinsolve):", solutions_set)
Output:
Solutions (nonlinsolve): FiniteSet((-4, -3), (-4, 3), (4, -3), (4, 3))

1.13.5. Solving Transcendental Equations
A transcendental equation is an equation that involves transcendental functions, such as
exponential, logarithmic, or trigonometric functions, which cannot be expressed using only
algebraic operations. Unlike polynomial equations, transcendental equations often do not
have closed-form solutions and require numerical or symbolic methods to solve.

SymPy provides powerful tools to solve transcendental equations, including solve() for
symbolic solutions and nsolve() for numerical approximations. Many cases, transcendental
equations do not have an exact solution, in this case solve() function is not applicable.

Example: Solve the transcendental equation . 𝑒𝑥 = 3𝑥

Code:
from sympy import symbols, Eq, exp, nsolve
x = symbols('x')
equation = Eq(exp(x) - 3*x, 0) # e^x = 3x
Numerical solution
numerical_sol = nsolve(equation, x, 1) # Initial guess x=1
print("Numerical Solution:", numerical_sol)

#Output:
Numerical Solution: 1.51213455165784

20

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Example: Solve the transcendental equation using solveset(). 𝑠𝑖𝑛(𝑥) = 0. 5

SymPy’s solveset() function is an advanced solver that returns solutions as sets. It works well
for equations with symbolic solutions and can handle many features.

Code:
from sympy import sin, pi, solveset
solution = solveset(Eq(sin(x), 0.5), x)
print(f"Solution: {solution}")

Output:
Solution: {π/6, 5π/6}

Example (Solving Inequalities): Solve the inequation 𝑥2 − 4 > 0

Code:
from sympy import solve_univariate_inequality
inequality = x**2 - 4 > 0
solution = solve_univariate_inequality(inequality, x)
print(f"Solution: {solution}")

Output:
Solution: (−∞, −2) ∪ (2, ∞)

Example: Solve using the sympy package. 𝑠𝑖𝑛(𝑥) − 0. 5 = 0

Code:
from sympy import *
x = symbols('x')
r=nsolve(sin(x)-0.5, x, 1)
print(f"Solution x: {r}")

Output:
Solution x: 0.523598775598299

1.14. Calculus: Limit, Differentiation and Integration

SymPy is extensively used in calculus for differentiation, integration, and limits. Its
differentiation feature is beneficial for every applied field like physics and engineering.
Actually, derivatives are used to compute rates of change and other properties.

1.14.1. Limits and Continuity

SymPy can calculate limits, which are essential in calculus, especially when analyzing the
behavior of functions near a point.

Example (Evaluation of limit from positive side of a function):

21

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

SymPy calculates the limit of f as x approaches 1 from the positive side. This is helpful in
calculus for studying continuity and behavior of functions at critical points.

Example (Evaluation of limit of a function):

Code:
from sympy import limit
expr = (x**2 - 1) / (x - 1)
lim = limit(expr, x, 1)
print(lim)

#Output: 2

SymPy finds that the limit of as approaches 1 is 2. 𝑥2−1
𝑥−1 𝑥

1.14.2. Differentiation of a function

SymPy supports differentiation and integration, core to calculus. These features are
extensively used in physics, machine learning, and economic modeling.

Example (Differentiation):

Code:
from sympy import *
f = x**3 + 2*x**2 + x
f_prime = diff(f, x)
print(f_prime)

#Output: 3*x**2 + 4*x + 1

In this example, SymPy computes the derivative of f with respect to x, a task useful in
physics (e.g., calculating velocity from displacement) and in optimizing cost functions in
economics.

Example (Differentiation):

Code:
from sympy import diff
expr = x**3 + 3*x**2 + 5

22

Code:
from sympy import limit
from sympy import *
x=Symbol('x')
f = 1 / (x - 1)
lim_x1 = limit(f, x, 1, '+')
print(lim_x1)

Output:
oo (∞)

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

derivative = diff(expr, x)
print(derivative)

#Output:
3*x**2 + 6*x

SymPy computes the derivative of the function . 3𝑥2 + 6𝑥 𝑥3 + 3𝑥2 + 5

1.14.3. Integration with SymPy

Example (Integration):

Code:
from sympy import integrate
area_under_curve = integrate(f, (x, 0, 2))
print(area_under_curve)

Output: 14/3

SymPy calculates the definite integral of f from 0 to 2. This result is vital in fields like

probability (finding areas under curves) and physics (calculating the work done by a force

over a distance).

Example (Integration):

Code:
from sympy import integrate
expr = x**2 + x
integral = integrate(expr, x)
print(integral)

Output:
x**3/3 + x**2/2

SymPy provides the indefinite integral of . 𝑥3

3 + 𝑥2

2 𝑥2 + 𝑥

The following table shows a list of calculus commands in SymPy:

Table: List of calculus commands in SymPy

Operation Description SymPy Function

Differentiation Computes the derivative of an
expression

diff(f, x)

Partial Derivative Computes the partial derivative diff(f, x, y)

23

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Higher-Order
Derivative

Computes the nth derivative diff(f, x, n)

Gradient Computes the gradient vector gradient(f, (x, y, z))

Jacobian Computes the Jacobian matrix Jacobian(f, (x, y, z))

Hessian Matrix Computes the Hessian matrix
(second-order partial derivatives)

hessian(f, (x, y, z))

Divergence Computes the divergence of a
vector field

divergence(F, (x, y, z))

Curl Computes the curl of a vector
field

curl(F, (x, y, z))

Integration Computes the integral of an
expression

integrate(f, x)

Definite Integral Computes a definite integral integrate(f, (x, a, b))

Multiple Integrals Computes double and triple
integrals

integrate(f, (x, a, b), (y, c, d))

Limit Computes the limit of a function limit(f, x, a)

Series Expansion Computes the Taylor/Maclaurin
series

series(f, x, n)

Laplace
Transform

Computes the Laplace transform laplace_transform(f, t, s)

Inverse Laplace
Transform

Computes the inverse Laplace
transform

inverse_laplace_transform(F, s,
t)

Fourier Transform Computes the Fourier transform fourier_transform(f, x, k)

Inverse Fourier
Transform

Computes the inverse Fourier
transform

inverse_fourier_transform(F, k,
x)

Residue Finds the residue of a function at
a singularity

residue(f, x, a)

1.14.4. Series Expansion with SymPy

Series expansions are widely used in calculus and mathematical analysis for approximating
functions. SymPy can compute the Taylor or Maclaurin series of functions.

Example (Series):

24

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Code:
from sympy import sin, series
taylor_series = series(sin(x), x, 0, 6)
print(taylor_series)

 # Output:
x - x**3/6 + x**5/120 + O(x**6)

This is the Maclaurin series expansion of up to 𝑠𝑖𝑛(𝑥) 𝑥5.

Example (Series):

Code:
from sympy import series, sin
taylor_series = series(sin(x), x, 0, 5)
print(taylor_series)

 # Output:
x - x**3/6 + x**5/120 + O(x**6)

SymPy computes a Taylor series expansion of sin(x) up to the fifth term, useful in
approximating functions in physics (e.g., small angle approximations).

1.14.5. Matrix algebra with SymPy

SymPy includes linear algebra tools for operations on matrices, like finding determinants,
eigenvalues, and inverses, which are important in areas like computer graphics, quantum
mechanics, and systems of equations.

Example (Matrix):

Code:
from sympy import Matrix
matrix = Matrix([[1, 2], [3, 4]])
determinant = matrix.det()
inverse_matrix = matrix.inv()
print(determinant)

Output: -2 print(inverse_matrix)

Output: Matrix([[-2, 1], [3/2, -1/2]])

SymPy calculates the determinant and inverse of the given matrix.

The following table shows a list of common matrix operations in SymPy :

Table: List of common matrix operations

25

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Operation Description SymPy Function

Matrix Creation Creates a symbolic or numerical
matrix

Matrix([[a, b], [c, d]])

Identity Matrix Creates an Identity matrix 𝐼
𝑛

eye(n)

Zero Matrix Creates a matrix filled with zeros zeros(n, m)

Ones Matrix Creates a matrix filled with ones ones(n, m)

Transpose Transposes the matrix AAA A.T

Inverse Computes the inverse of a matrix A.inv()

Determinant Computes the determinant of a
matrix

A.det()

Rank Computes the rank of a matrix A.rank()

Eigenvalues Finds the eigenvalues of a matrix A.eigenvals()

Eigenvectors Computes the eigenvectors A.eigenvects()

Characteristic
Polynomial

Finds the characteristic polynomial A.charpoly()

Trace Computes the trace (sum of diagonal
elements of a matrix)

A.trace()

Row Echelon Form Converts matrix to row echelon form A.rref()

LU Decomposition Performs LU factorization A.LUdecomposition()

QR Decomposition Performs QR decomposition A.QRdecomposition()

Cholesky Decomposition Computes the Cholesky factorization A.cholesky()

Singular Value
Decomposition (SVD)

Computes SVD A.singular_value_dec
omposition()

Matrix Addition Adds two matrices A + B

Matrix Subtraction Subtracts two matrices A - B

Matrix Multiplication Multiplies two matrices A * B

Scalar Multiplication Multiplies a matrix by a scalar k * A

Element-wise Power Raises each element to a power A**n

26

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Solving Linear Systems Solves AX=B for X A.solve(B)

Adjugate (Adjoint)
Matrix

Computes the adjugate matrix A.adjugate()

Cofactor Matrix Computes the cofactor matrix A.cofactor_matrix()

Jordan Form Computes the Jordan normal form A.jordan_form()

1.14.6 Special Matrices in SymPy
SymPy provides built-in functions to create various special matrices, which have unique
structures and properties. These matrices are commonly used in linear algebra, numerical
analysis, and symbolic computations.

The following table shows a list of some important special matrices in SymPy:

 Table: List of some important special matrices in SymPy

Matrix Type Description SymPy Function

Identity Matrix Square matrix with ones on the diagonal
and zeros elsewhere

eye(n)

Zero Matrix A matrix with all elements as zero zeros(n, m)

Ones Matrix A matrix with all elements as one ones(n, m)

Diagonal
Matrix

A square matrix with specified values
on the diagonal and zeros elsewhere

diag(*values)

Jordan Block
Matrix

Block diagonal matrix used in Jordan
form computations

jordan_block(size, value)

Hilbert Matrix A matrix where each element is given
by Hi,j=1i+j−1H_{i,j} =
\frac{1}{i+j-1}Hi,j =i+j−11

Hilbert(n)

Hadamard
Matrix

A square matrix whose entries are +1 or
-1, used in signal processing

hadamard(n)

Vandermonde
Matrix

A matrix where each row follows a
geometric progression

Matrix.vandermonde(x, n)

Companion
Matrix

A special square matrix associated with
polynomials

companion(polynomial)

Toeplitz Matrix A matrix where each descending
diagonal has constant values

Toeplitz(row, col)

27

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Circulant
Matrix

A special Toeplitz matrix where each
row is a cyclic shift of the previous one

circulant(vector)

Random Matrix A matrix with random elements randMatrix(n, m)

Wronskian
Matrix

A determinant useful in differential
equations

wronskian(functions, var)

1.14.7. Differential Equations

SymPy provides functions to solve ordinary differential equations (ODEs), which are

frequently encountered in engineering, physics, and economics.

Example (Differential Equation):

Code
from sympy import Function, Eq, dsolve
y = Function('y')
ode = Eq(y(x).diff(x) - y(x), 0)
solution = dsolve(ode)
print(solution)

 # Output: Eq(y(x), C1*exp(x))

Here, SymPy finds the solution to the differential equation . 𝑦(𝑥) = 𝐶1𝑒𝑥 𝑑𝑦
𝑑𝑥 − 𝑦 = 0

 Table: List of commands for differential equations in SymPy

Operation Description SymPy Function

Define a Differential
Equation

Represents a differential
equation

Eq(y.diff(x) - y, 0)

First-Order ODE
Solution

Solves a first-order ODE dsolve(Eq(y.diff(x) - y, 0), y(x))

Higher-Order ODE
Solution

Solves higher-order ODEs dsolve(Eq(y.diff(x, 2) + y, 0), y(x))

System of ODEs Solves a system of coupled
ODEs

dsolve([Eq(y1.diff(x), y2),
Eq(y2.diff(x), -y1)], [y1, y2])

General Solution Finds the general solution of
an ODE

dsolve(ODE, func)

28

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Particular Solution Finds a particular solution
with initial conditions

dsolve(ODE, func, ics={y(0): 1,
y.diff(x).subs(x, 0): 0})

Verify Solution Checks if a given function is
a solution of the ODE

checkodesol(Eq(y.diff(x) - y, 0),
y(x) - exp(x))

Classify ODE Determines the type of an
ODE

classify_ode(Eq(y.diff(x) - y, 0))

Series Solution Finds a series expansion
solution

dsolve(ODE, hint='series')

Numerical Solution
(ODE Solver)

Solves an ODE numerically odeint(f, y0, t) (from SciPy)

1.15. Worked Out Examples

Example-1: What is a Computer Algebra System (CAS)? Give some common examples.

Write Some key features of CAS.

Answer: A Computer Algebra System (CAS) is a software tool designed to perform symbolic

mathematical computations. Unlike traditional numerical calculators, a CAS can manipulate algebraic

expressions, solve equations symbolically, perform differentiation and integration, and simplify

complex mathematical expressions.

Examples of CAS include SymPy (Python-based), Mathematica, Maple, Maxima, MATLAB
(Symbolic Math Toolbox)

Key Features of CAS include

● Symbolic Computation: Works with algebraic expressions instead of just numbers.

● Equation Solving: Solves equations and systems symbolically.

● Differentiation & Integration: Performs symbolic calculus operations.

● Matrix Algebra: Supports operations on matrices and vectors.

● Visualization: Generates plots of mathematical functions.

Example - 2: What is SymPy, and how does it differ from NumPy?

 Answer:

SymPy: SymPy (Symbolic Python) is a symbolic mathematics library for Python. It allows

for exact algebraic computations, including differentiation, integration, equation solving,

matrix operations, and symbolic plotting. SymPy is particularly useful for symbolic

computation in mathematics, physics, engineering, and computer science.

29

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

NumPy: NumPy (Numerical Python) is a numerical computing library for Python. It

Provides support for fast array operations, linear algebra, Fourier transforms, random number

generation, and numerical integration. NumPy is widely used for scientific computing and

machine learning due to its efficient handling of large datasets.

 Table: Comparison of SymPy and NumPy

Characteristics SymPy NumPy

Feature Symbolic computation (exact math) Numerical computation
(approximate math)

Type of Data Works with symbolic expressions Works with arrays and
numbers

Accuracy Exact results (e.g., fractions, square
roots)

Approximate floating-point
results

Computation
Type

Algebraic manipulation Fast numerical calculations

Different use Solving equations, calculus, algebra Data analysis, statistics,
machine learning

Computation diff(x**2, x) → 2*x np.diff([1, 2, 4]) → [1, 2]

Use of SymPy vs Use of NumPy
● Use SymPy when you need exact symbolic solutions (e.g., solving algebraic equations,

symbolic differentiation).

● Use NumPy when you need fast numerical calculations (e.g., working with large datasets,

performing matrix operations).

Coding Example

Code:
from sympy import symbols, diff
x = symbols('x')
expr = x**2
derivative = diff(expr, x)
print(derivative)

Output: 2*x

Code:

30

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

import numpy as np
arr = np.array([1, 2, 4])
diff_arr = np.diff(arr)
print(diff_arr)

Output: [1 2]

Example- 3: Use SymPy to compute the expression for . 𝑥2𝑦3 + 𝑥2𝑒𝑦 𝑥 = 2. 3, 𝑦 = 1. 75

Solution:

Code:
from sympy import symbols
x, y=symbols('x y')
y=1.75;
f=x**2*y**3+x**2*exp(y)
f1 = f.subs(x,2.3)
print(f"Substitution (x=2.3,y=1,75): {f1}")

Output:
Substitution (x=2.3,y=1,75): 58.7929419060703

Example - 4: How is SymPy different from other Computer Algebra Systems such as
Mathematica and Maple?

Answer: SymPy is a lightweight, Python-based symbolic mathematics library that stands out
among other Computer Algebra Systems (CAS) due to its flexibility, ease of integration, and
pure Python implementation. Below is a comparison of SymPy vs. other major CAS like
Mathematica and Maple.

Table: Key Differences SymPy vs. Mathematica and Maple

Criteria SymPy Mathematica Maple

Programming
Language

Pure Python Proprietary language Proprietary language

Cost to buy Free & Open-source Paid Paid

Ease of Use Easy for Python users GUI-based, steep
learning curve

GUI-based, better
for research

Numerical
Computation

Limited (via evalf()) High precision High precision

Graphing &
Visualization

Uses Matplotlib Built-in Built-in

Nature Native Python library Needs external APIs Needs external APIs

31

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Example - 5: What do you mean by Symbolic Computation? How is it different from
numerical computation? Discuss with an example.

 Solution: Symbolic computation (also called computer algebra) refers to the manipulation
and evaluation of mathematical expressions in exact form, without numerical approximation.
It allows for algebraic transformations, differentiation, integration, simplification, and
equation solving in terms of symbols rather than fixed numerical values.

 Key Features of Symbolic Computation are listed below:

● Works with mathematical symbols rather than fixed numbers.
● Provides exact results (e.g., fractions, square roots, and algebraic expressions).
● Allows for differentiation, integration, and equation solving in symbolic form.
● Used in calculus, algebra, and symbolic logic applications.

Example of Symbolic computation: Finding the derivative of using 𝑓(𝑥) = 𝑥2 + 3𝑥 + 2
symbolic computation, we can differentiate the function exactly as:

Code:
from sympy import symbols, diff
x = symbols('x')
f = x**2 + 3*x + 2
derivative = diff(f, x)
print(derivative)

 # Output: 2*x + 3

Numerical computation deals with approximate solutions using floating-point arithmetic. It
is widely used in scientific computing, engineering, and real-time applications where exact
solutions are impractical.

Key Features of Numerical Computation are listed below:
● Works with approximate floating-point numbers.
● Uses numerical methods to compute derivatives, integrals, and solutions.
● Can handle large datasets and high-speed computations efficiently.
● Used in machine learning, simulations, and data science.

Example of Numerical Computation: Approximating the derivative of

 𝑓(𝑥) = 𝑥2 + 3𝑥 + 2

Instead of finding an exact formula, we compute an approximate derivative at using 𝑥 = 2

numerical methods.

Python Code Using NumPy (Numerical Computation):
import numpy as np
def f(x):
 return x**2 + 3*x + 2
x_val = 2.0
dx = 1e-5 # Small step size

32

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

numerical_derivative = (f(x_val + dx) - f(x_val)) / dx
print(numerical_derivative)

Output: ~6.99999 (close to 7)

Example - 6: How do you define a symbolic variable in SymPy?

Solution: In SymPy, a symbolic variable is defined using the symbols() or Symbol() function
from the sympy module. These symbolic variables are used for algebraic manipulations,
differentiation, integration, and equation solving.

 Example of defining symbol using symbols():

Code:
from sympy import symbols
x = symbols('x')
y, z = symbols('y z') # Multiple variables
print(x, y, z)

 # Output: x y z

Example of defining symbol using Symbol():

Code:
from sympy import Symbol
a = Symbol('a')
print(a)

Output: a

Example - 7: Solve the quadratic equation for in SymPy 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 (𝑎 ≠ 0) 𝑥
considering are constants and return the solutions as a dictionary. 𝑎, 𝑏, 𝑐
Solution:

Code:
from sympy import *
x = Symbol('x')
a = Symbol('a')
b = Symbol('b')
c = Symbol('c')
expr = a*x*x + b*x + c
solve(expr, x, dict=True)

Output:

 𝑥: −𝑏+ −4𝑎𝑐+𝑏2

2𝑎
⎰
⎱

⎱
⎰, 𝑥: −𝑏− −4𝑎𝑐+𝑏2

2𝑎
⎰
⎱

⎱
⎰

⎡
⎢
⎣

⎤
⎥
⎦

33

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Example - 8: Solve the system of two equations 2x+3y−6=0 and 3x+2y−12=0 in SymPy,
verify the solution by substituting it back into the original equations, and ensure both
equations evaluate to zero.
Solution:

Code:
from sympy import *
x = Symbol('x')
y = Symbol('y')
expr1 = 2*x + 3*y - 1
expr2 = 3*x + 2*y - 4
solve((expr1, expr2), dict=True)
soln = solve((expr1, expr2),dict=True)
soln = soln[0]
print(f"Solution={soln}")
expr1.subs({x:soln[x], y:soln[y]})
expr2.subs({x:soln[x], y:soln[y]})

Output:
Solution={x: 2, y: -1}
0

Example - 9: Expand the expression and present it 𝑥 + 𝑦()3 𝑦 + 𝑧()2 + 𝑥 + 𝑦()2 𝑦 + 𝑧()3
collecting the co-efficients of and collecting the co-efficients of . 𝑥 𝑦

Solution:

Code:
from sympy import *
x= Symbol('x')
y= Symbol('y')
z= Symbol('z')
f=x**2*(x+z)+y**2*(y+z)+x*(y**2+z**2)+x**3*z+y**3*x
print("Expanded form of the function:")
print(f.expand())
print("Expanded form of the function after collecting x:")
print(f.expand().collect(x))
print("Expanded form of the function after collecting y:")
print(f.expand().collect(y))

Output:
Expanded form of the function:
x**3*z + x**3 + x**2*z + x*y**3 + x*y**2 + x*z**2 + y**3 + y**2*z
Expanded form of the function after collecting x:
x**3*(z + 1) + x**2*z + x*(y**3 + y**2 + z**2) + y**3 + y**2*z
Expanded form of the function after collecting y:
x**3*z + x**3 + x**2*z + x*z**2 + y**3*(x + 1) + y**2*(x + z)

34

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Example - 10: Write symbolic function in Python. Then 𝑓(𝑥) = 𝑥𝑠𝑖𝑛(𝑥) − 𝑙𝑜𝑔(2 + 𝑥2)
find the functions after substituting by and Also find the value of the function 𝑥 3𝑥 𝑦/2.
at 𝑥 = π.

Solution:

Code:
x= Symbol('x')
y= Symbol('y')
f=x*sin(x)-log(2+x**2)
print("The original function is: ")
print(f)
print("The substitute x with 3x in the function and find new
function: ")
print(f.subs(x,3*x)) # here x is replaced by 3x
print("The substitute x with y/2 in the function and find new
function: ")
print(f.subs(x,y/2)) # here x is replaced by y/2 (variable
different)
print("Value of the function after substitution of a numerical
value of x:")
f.subs(x,pi) # Give functional value at x=pi

#Output:
The original function is:
x*sin(x) - log(x**2 + 2)
The substitute x with 3x in the function and find new function:
3*x*sin(3*x) - log(9*x**2 + 2)
The substitute x with y/2 in the function and find new function:
y*sin(y/2)/2 - log(y**2/4 + 2)
Value of the function after substitution of a numerical value of x:
-log(2 + pi**2)

Example - 11: Write in 𝑓(𝑥) = 𝑙𝑜𝑔(𝑠𝑖𝑛(𝑥) + 2𝑡𝑎𝑛(𝑥) + 3) + 𝑠𝑖𝑛(2𝑥) − 𝑠𝑖𝑛3(𝑥)
Python. Then find the function after substituting by . 𝑠𝑖𝑛 𝑐𝑜𝑠
Solution:

Code:
from sympy import *
x= Symbol('x')
h=log(sin(x)+2*tan(x)+3)+sin(2*x)-sin(x)**3
print("The original function is: ")
print(h)
print("Reduced function after substitution of the function sin by cos")
print(h.subs(sin,cos))
#In this case sin(x) is replaced by cos(x) in the expression

#Output:
The original function is:
log(sin(x) + 2*tan(x) + 3) - sin(x)**3 + sin(2*x)
Reduced function after substitution of the function sin by cos

35

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

log(cos(x) + 2*tan(x) + 3) - cos(x)**3 + cos(2*x)

Example - 12: Solve for , and display the solutions in a well-formatted 𝑠 = 𝑢𝑡 + 1

2 𝑎𝑡2 𝑡
manner using SymPy.
 Solution:

from sympy import Symbol, solve
Define symbolic variables
s = Symbol('s')
u = Symbol('u')
t = Symbol('t')
a = Symbol('a')
Define the equation s = ut + (1/2) * a * t^2
expr = u*t + (1/2)*a*t**2 - s
Solve for t
solutions = solve(expr, t)
Display solutions in a well-formatted manner
print("Solutions for t:")
pprint(solutions)

Example - 13: Simplify after substituting for into the expression 1 − 𝑦 𝑥 𝑥2 + 𝑥𝑦 + 𝑦2

using SymPy.
Solution:

Code:
from sympy import symbols,simplify
x, y=symbols('x y')
f=x**2+x*y+y**2
f1 = f.subs(x,1-y)
print(f"Substitution (x=1-y): {f1}")
f2=simplify(f1)
print(f"Simplified form: {f2}")

Output:
Substitution (x=1-y): y**2 + y*(1 - y) + (1 - y)**2
Simplified form: y**2 - y + 1

Example - 14: Substitute into the expression , and 𝑥 = 1 + 𝑦 𝑥3 + 𝑥2𝑦 + 𝑥𝑦2 + 𝑦3

simplify the resulting expression using SymPy.

 Solution:

Code:
from sympy import symbols,simplify
x, y=symbols('x y')
f=x**3+x**2*y+x*y**2+x**3
f1 = f.subs(x,1+y)
print(f"Substitution (x=1+y): {f1}")
f2=simplify(f1)

36

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

print(f"Simplified form: {f2}")

Output:
Substitution (x=1+y): y**2*(y + 1)+y*(y + 1)**2+2*(y + 1)**3
Simplified form: 4*y**3+9*y**2+7*y+2

Example - 15: How can you create the expression x−5−7, and solve x−5=7 for x using
SymPy?

 Solution:

Code:
from sympy import Symbol
Define the variable x
x = Symbol('x')
Define the expression x - 5 - 7
expr = x - 5 - 7
Display the expression
print("Expression:")
print(expr)
Solve for x
 solution = solve(expr, x)
Display the solution
print("Solution for x:")
print(solution)

Output:
Expression: x - 12
Solution for x: [12]

Example - 16: How can you take a mathematical expression as input from the user in
SymPy, convert it into a symbolic expression, and store it for further operations?

Solution:

Code:
from sympy import sympify
expr = input('Enter a mathematical expression: ')
expr = sympify(expr)
print(f"Expression={expr}")

Output:
Enter a mathematical expression: 2*x+5*y
Expression=2*x + 5*y

Example - 17: Use SymPy to
 (a) split into partial fractions. 3𝑥(𝑥 − 1)(𝑥 + 2)(𝑥 − 5)
 (b) simplify . 𝑠𝑖𝑛4(𝑥) − 2𝑐𝑜𝑠2(𝑥)𝑠𝑖𝑛2(𝑥) + 𝑐𝑜𝑠4(𝑥)
 (c) expand . (𝑦 + 𝑥 − 3)𝑥2 − 𝑦 + 4
Solution:

37

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

(a)

Code:
import sympy as sp
Define symbolic variable
x = sp.symbols('x')
Define the fraction
expr = 3*x / ((x - 1) * (x + 2) * (x - 5))
Perform partial fraction decomposition
partial_fractions = sp.apart(expr)
print(partial_fractions)

Output:
-2/(7*(x + 2)) - 1/(4*(x - 1)) + 15/(28*(x - 5))

(b)

Define trigonometric expression
expr = sp.sin(x)**4 - 2*sp.cos(x)**2 * sp.sin(x)**2 +
sp.cos(x)**4
Simplify the expression
simplified_expr = sp.simplify(expr)
print(simplified_expr)

Output: cos(4*x)/2 + 1/2

(c)

Define symbolic variables
x, y = sp.symbols('x y')
Define the expression
expr = (y + x - 3) * x**2 - y + 4
Expand the expression
expanded_expr = sp.expand(expr)
print(expanded_expr)

Output: x**3 + x**2*y - 3*x**2 - y + 4

Example - 18: Solve the system of linear equations . 2𝑥 + 𝑦 = 5; 3𝑥 − 7𝑦 = 1
Solution:

Code:
from sympy import *
x = Symbol('x')
y = Symbol('y')
eq1 = Eq(2*x+y,5)
eq2 = Eq(3*x -7*y, 1)
solution = solve([eq1, eq2], (x, y))
print(f"Solution: {solution}")

38

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

#Output:
Solution: {x: 36/17, y: 13/17}

Example - 19: Solve using package sympy in Python. 𝑥𝑙𝑜𝑔(𝑥) = 5𝑐𝑜𝑠(𝑥)

Code:
from sympy import *
x = symbols('x')
r=nsolve(x*log(x)-5*cos(x), x, 1)
print(f"Solution x= {r}")

Output:
Solution x= 1.46005225470169

Exercise - I

1. What is SymPy, and what are its key features?
2. How do you define and declare symbolic variables in SymPy?
3. What is the purpose of the sympify() function, and how does it handle user input?
4. How can you expand, factor, and simplify algebraic expressions using SymPy?
5. What functions are used in SymPy to differentiate and integrate expressions?
6. How do you solve algebraic equations symbolically in SymPy?
7. What is the purpose of the subs() function in SymPy?
8. How can you work with matrices and perform matrix operations in SymPy?
9. How do you convert a SymPy expression into a numerical value using evalf()?
10. How can you solve a system of equations using SymPy?
11. What is the expand() function in SymPy? Demonstrate its use with polynomial expressions.
12. How can SymPy be used to factorize polynomials? Provide examples.
13. Explain the use of the subs() function in SymPy. How does it help in expression evaluation?
14. Write python code to get expanded form of

(i) and (ii) . 𝑝 𝑥() = 𝑥2 + 𝑥 + 𝑦()3 𝑓 𝑥, 𝑦, 𝑧() = 𝑥2𝑧 + 𝑥 + 𝑦()3 + 𝑧 𝑥 + 𝑦()2

15. Write SymPy command to get the factors of the functions

i) ii) iii) 𝑓 𝑥() = (𝑥3 − 1)(𝑥 − 1) 𝑓 𝑥, 𝑦() = 𝑥4 − 𝑦4() 𝑥2 − 𝑦2() 𝑓 𝑥() = 𝑥6 − 1

16. Define following symbolic functions in SymPy and find the value at points , 𝑥 = 0. 2, 0. 4, 0. 6
0.8 using . 𝑠𝑢𝑏𝑠()

 (a) (b) 𝑓 𝑥() = 5
3
2 + 𝑥3

5+ 𝑥+ 𝑥
𝑓 𝑥() = 1 − 0. 162𝑥 + 3𝑥+2

5

 (c) (d) 𝑓 𝑥() = 𝑥5−3𝑥2+7

𝑥3+𝑥−2
𝑓 𝑥() = 𝑥3 𝑠𝑖𝑛 𝑥+ 𝑥()

1+π𝑥3𝑙𝑜𝑔 𝑥

17. Factorise using SymPy Command

 (a) (b) (𝑥64 − 1) 𝑥8 − 1() + 𝑥4 − 1() 𝑥2 − 1()

39

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

 (c) (d) 𝑝2 − 2𝑎𝑝 + 𝑎2 − 𝑏2() 𝑥2 − 𝑚 + 𝑛()𝑥 + 𝑎 + 𝑚()(𝑎 + 𝑛)

18. Define symbolic function in Sympy. Then 𝑓 𝑥() = 𝑥2 + 2

a. add an expression to and show the resulting function. Further replace by 𝑥𝑒𝑥 𝑓(𝑥) 𝑥

 log 𝑙𝑜𝑔 𝑥.

b. multiply by and show fully simplified form and its degree. 𝑓(𝑥) 𝑥5 + 2𝑥 + 3

19. Let , then find another function in such that and are 𝑓 𝑥() = 𝑥5 + 2𝑥3 − 3𝑥 + 7 𝑦 𝑥 𝑦
related by the relation commands. 2𝑥 − 7𝑦 = 1 𝑢𝑠𝑖𝑛𝑔 𝑆𝑦𝑚𝑝𝑦

20. Use Sympy find roots of the following algebraic equations:

 (a) for (b) for 𝑥𝑛 − 1 = 0 2≤𝑛≤8 𝑥𝑛 + 1 = 0 2≤𝑛≤8

 (c) (d) 𝑥3 − 1. 1𝑥2 + 4𝑥 − 4. 4 = 0 𝑥3 − 𝑥 − 1 = 0

 (e) (f) 𝑥3 + 2𝑥 − 6 = 0 𝑥3 + 7𝑥2 + 9 = 0

21. Use Sympy find a root of the following Transcendental equations:
 (a) (b) 3𝑥 − 𝑐𝑜𝑠 𝑥 − 1 = 0 𝑙𝑜𝑔 𝑥 − 𝑐𝑜𝑠 𝑥 = 0

 (c) (d) 𝑥𝑥 + 𝑥 − 4 = 0 𝑥𝑡𝑎𝑛 𝑥 + 2𝑥2 − 2. 5 = 0

 (e) for k=2.5(0.1)2.9 𝑙𝑜𝑔 1 + 𝑥2() + 𝑒𝑘sin𝑠𝑖𝑛 𝑥 − 1. 6 = 0

 (f) for 𝑥2 − 5𝑙𝑜𝑔 (𝑎𝑥2 + 𝑏𝑥 + 𝑐) = 0 𝑎 = 5, 𝑏 = 2, 𝑐 = 3

 (g) , where 𝑡𝑎𝑛 𝑎𝑥 − 𝑡𝑎𝑛ℎ 𝑎𝑥 − 𝑎 = 0 𝑎 = 1. 25

22. Use Sympy to the system of linear equations:

(i) 𝑥 − 2𝑦 + 2𝑧 = 2
 2𝑥 − 𝑦 − 2𝑧 = 1
 2𝑥 + 2𝑦 + 𝑧 = 7

(ii) 3𝑥 + 𝑦 + 2𝑥 = 3
 2𝑥 − 3𝑦 − 𝑧 =− 3
 𝑥 + 2𝑦 + 𝑧 = 4

iii) 2𝑥 + 𝑦 + 𝑧 = 10
 3𝑥 + 2𝑦 + 3𝑧 = 18
 𝑥 + 4𝑦 + 9𝑧 = 16

iv) 2𝑥 + 3𝑦 + 𝑧 = 9
 𝑥 + 2𝑦 + 3𝑧 = 6
 3𝑥 + 𝑦 + 2𝑧 = 8

23. Use SymPy code to evaluate the following limits:

i) ii) iii) iv) 𝑥2+3𝑥

𝑥2+𝑥+1
 𝑠𝑖𝑛 𝑥

𝑥+𝑐𝑜𝑠 𝑥 1 + 1
𝑥()𝑥

 𝑠𝑖𝑛 1−𝑥()

1−𝑥2

24. Test the continuity of the following functions at indicated points using Sympy

i) , at 𝑓 𝑥() = 𝑥 − 𝑥[] 𝑥 = 1.

ii) 𝑓 𝑥() = 𝑥2 𝑤ℎ𝑒𝑛 0 < 𝑥 < 1; 𝑥, 𝑤ℎ𝑒𝑛 1≤𝑥 < 2; 𝑥3

4 , 𝑤ℎ𝑒𝑛 2≤𝑥 < 3

 at 𝑥 = 1, 2

40

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

iii) at 𝑓 𝑥() = 𝑥, 0≤𝑥≤1; 𝑥 − 2, 1 < 𝑥≤2 𝑥 = 1

iv) 𝑓 𝑥() = 1 + 𝑥, 𝑥≤0; 𝑥, 0 < 𝑥 < 1; 2 − 𝑥, 1≤𝑥≤2; 3𝑥 − 𝑥2, 𝑥 > 2

 at 𝑥 = 0, 1, 2

25. Use Sympy to find for the following: 𝑑𝑦
𝑑𝑥

i) ii) iii) iv) 𝑦 = 𝑙𝑜𝑔 𝑐𝑜𝑠ℎ 𝑥 𝑦 = 𝑠𝑖𝑛 𝑥 𝑦 = 𝑥𝑥 + 𝑥
1
𝑥 𝑦 = 𝑥𝑥

v) , where are constants. vi) vii) 𝑦 =
𝑎+𝑏𝑥

3
2()

𝑐𝑥
5
4

𝑎, 𝑏, 𝑐 𝑦 = 𝑥𝑥𝑥

𝑦 = 1−𝑥
1+𝑥

viii) ix) x) 𝑦 = (𝑒𝑥 𝑠𝑖𝑛 𝑥) 𝑦 = 10𝑙𝑜𝑔 𝑠𝑖𝑛 𝑥 𝑦 = 𝑥𝑥

26. Find from the following parametric curves using Sympy commands
𝑑𝑦
𝑑𝑥

i) ii) 𝑥 = 𝑎𝑡2, 𝑦 = 2𝑎𝑡 𝑥 = 𝑎 𝑡 − sin 𝑠𝑖𝑛 𝑡 (), 𝑦 = 𝑎(1 − cos 𝑐𝑜𝑠 𝑡)

iii) 𝑥 = 𝑎 cos 𝑐𝑜𝑠 𝑡 + 𝑡 sin 𝑠𝑖𝑛 𝑡 (), 𝑦 = 𝑎(sin 𝑠𝑖𝑛 𝑡 − 𝑡 cot 𝑐𝑜𝑡 𝑡)

iv) 𝑥 = 𝑡
cos𝑐𝑜𝑠 2𝑡

 𝑦 = 𝑡
cos𝑐𝑜𝑠 2𝑡

27. Use Sympy to

i) differentiate with respect to 𝑥2 + 𝑎𝑥 + 𝑎2() log 𝑙𝑜𝑔 cot 𝑐𝑜𝑡 𝑥
2 𝑎 cos 𝑐𝑜𝑠 𝑏𝑥 .

ii) differentiate with respect to 𝑥𝑛 log 𝑙𝑜𝑔 𝑥 sin𝑠𝑖𝑛 𝑥

𝑥
3
2

.

iii) differentiate with respect to 1+𝑥2+ 1−𝑥2

1+𝑥2− 1−𝑥2
1 − 𝑥4.

28. Use Sympy to find 2nd , 3rd and 5th order differentiation of the following functions:

 i) ii) iii) 𝑦 = 𝑥5𝑒3𝑥 𝑦 = 1

𝑥2−𝑥−2
𝑦 = 𝑡𝑎𝑛 𝑒5𝑥

 iv) v) vi) 𝑦 = 𝑥2𝑙𝑜𝑔 𝑥
𝑎 𝑦 = 𝑙𝑜𝑔 𝑥

𝑥 𝑦 = 𝑒2𝑥3𝑥

29. Use Sympy code to find partial derivatives up to 2nd order of the following functions

i) ii) 𝑓 𝑥, 𝑦() = 𝑙𝑜𝑔 𝑥2−𝑦2

𝑥3+𝑦3() 𝑓 𝑥, 𝑦() = 𝑥−𝑦

𝑥2+𝑦2()
5

then find i) and ii) 𝑥 ∂𝑓
∂𝑥 + 𝑦 ∂𝑓

∂𝑦
∂2𝑓

𝑑𝑥2 + ∂2𝑓

∂𝑦2

41

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Chapter - 2

Plotting using SymPy

2.1 Introduction

SymPy (abbreviation for Symbolic Python) is a powerful Python library for symbolic
mathematics that includes built-in plotting tools for plotting mathematical functions and
symbolic expressions. Using its plot module, users can effortlessly visualize equations,
expressions, and functions without needing external plotting tools. This feature is particularly
valuable for examining the behavior of functions, studying equation solutions, and exploring
mathematical concepts. SymPy's plotting capabilities work seamlessly with symbolic
expressions, enabling dynamic and interactive visualizations that enhance symbolic
computations.

SymPy's plotting functionality is particularly useful for:

● Understanding the behavior of functions: Visualizing how a function changes over
a range of values.

● Analyzing equation and its solutions: Exploring solutions graphically by plotting
the expressions or equations.

● Exploring mathematical concepts: Visualizing symbolic computations to gain
deeper insights into their properties.

2.2 SymPy's Plotting Module
Import Required Modules: To use the plotting features, we need to import SymPy and the
necessary plotting tools:

Code: from sympy import symbols, plot, sin, cos, exp
 Or
 from sympy import *

42

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

2.2.1. Basic Plotting: Use the plot function to visualize a mathematical expression or
function.

Example(Default range of basic plot):

SymPy has a plot module for visualizing mathematical functions. This feature can help
scientists and mathematicians gain insights into function behaviors.

Code:
from sympy import *
x=Symbol('x')
plot(x**2)

Output:

This code generates a plot of the function from -10 to 10. Visualizations like this 𝑓(𝑥) = 𝑥2
are essential in fields like physics, where plotting potential energy functions reveals
equilibrium points, or in statistics to view distribution curves.
Example (Basic Plotting):

Code:
from sympy import symbols, plot, sin
x = symbols('x')
plot(sin(x), (x, -10, 10),
title="Plot of sin(x)", xlabel="x", ylabel="y")

Output: The following plot is obtained of the sine function over the range [−10,10].

43

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

2.2 Plotting of Several Functions: We can plot multiple functions together for comparison.

Example (Plotting of Several Functions):

Code:
from sympy import cos
plot(sin(x), cos(x), (x, -2*3.14, 2*3.14), legend=True)

Output: A single graph showing both sin (x) and cos (x) over the range [−2π,2π].

Parametric Plotting: For parametric equations, SymPy provides plot_parametric.

Example (Parametric Plotting):

Code:
from sympy import cos, pi
t = symbols('t')
plot_parametric(cos(t), sin(t), (t, 0, 2*pi),
title="Parametric Plot of a Circle")

 Output: A circular parametric plot.

44

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

2.3. Features and Customization

(a) Customizing the Plot: We can add titles, labels, and legends to enhance your plot:

Code:
plot(sin(x), (x, -10, 10), title="Sine Function",
xlabel="x-axis", ylabel="y-axis", legend=True)

Output:

(b) Multiple Ranges: Plotting functions with different ranges:

Code: plot((sin(x),(x,-10,10)),(cos(x),(x,-5,5)),legend=True)

Output:

45

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

2.4. Advantages of SymPy Plotting

1. Integration with Symbolic Expressions: Since SymPy is a symbolic mathematics
library, its plotting tools are tightly integrated with symbolic computations.

2. No Need for External Libraries: Basic visualization tasks can be accomplished
without relying on external plotting libraries like Matplotlib.

3. Dynamic Visualizations: Functions and expressions can be visualized dynamically by
simply modifying the symbolic expressions or ranges.

 Example-1:

Code:
from sympy import symbols, plot, sin
Define the variable
x = symbols('x')
Plot a single function
p1=plot(sin(x),(x,-10,10),show=False,title="Sine Function")
p1.show()

Output:

46

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

 Example-2

Code:
from sympy import symbols, plot, sin, cos,
Define the variable
x = symbols('x')
Plot multiple functions
p2 = plot(sin(x), cos(x), (x, -10, 10), legend=True,
show=False)
p2.title = "Sine and Cosine Functions"
p2.show()

Output:

2.5. Plotting Expressions Input by the User
Using SymPy, we can dynamically accept user input for mathematical expressions, convert
them into symbolic expressions, and then plot them. This method utilizes SymPy’s sympify
function to safely transform user-provided strings into symbolic expressions. This following
script demonstrates how to use SymPy to create dynamic plots of user-defined functions,
offering an interactive and flexible way to visualize mathematical concepts programmatically.

Code:
from sympy import symbols, sympify, plot
Step 1: Define the variable
x=symbols('x')
Step 2: Take user input for the mathematical expression
my_input=input("Enter a mathematical expression in terms of x
(e.g., sin(x), x**2 + 3*x - 5): ")
try:
Step 3: Convert the string input into a symbolic expression
expr=sympify(my_input)

47

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Step 4: Plot the expression
print("Plotting the expression...")
plot(expr, (x, -10, 10), title=f"Plot of {my_input}",
xlabel="x-axis", ylabel="y-axis")
except Exception as e:
Handle invalid input
print(f"Error:{e}.Please enter a valid mathematical
expression.")

Explanation of the above code:

● A symbolic variable x is defined using symbols('x'). This variable will represent
the independent variable in the user-defined expression.

● The input function is used to take the mathematical expression as a string (e.g., x**2
+ 3*x - 5).

● The sympify function converts the string input into a SymPy symbolic expression. This
function handles mathematical expressions while ensuring they are safely parsed.

● The plot function from SymPy is used to visualize the parsed expression over a default
range or a custom range (in this case, −10 to 10).

● Error Handling: If the user inputs an invalid expression, an exception is raised and
caught to provide meaningful feedback.

Hands -On Examples with user inputs:
Input:
Enter a mathematical expression in terms of x: x**2 + 2*x + 1

Output: A plot (shown in the following figure) of the quadratic function over 𝑥2 + 2𝑥 + 1
the range [−10,10].

Input:
Enter a mathematical expression in terms of x: sin(x) + cos(x)

48

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Output: A plot (shown in the following figure) showing sin (x)+cos (x) over the range
[−10,10].

Input (Invalid): Enter a mathematical expression in terms of x: x + *
Output:

Error: Sympify of expression 'could not parse 'x + *'' failed, because of exception being raised:
SyntaxError: unexpected EOF while parsing (<string>, line 1).Please enter a valid
mathematical expression.

Customization of the Script
1. Range Input: Allow the user to specify a custom range for plotting.

 x_min = float(input("Enter the minimum value of x: "))
 x_max = float(input("Enter the maximum value of x: "))
 plot(expr, (x, x_min, x_max), title=f"Plot of {my_input}")

2. Several Expressions: Allow the user to input and plot multiple expressions
simultaneously.

 expressions = input("Enter mathematical expressions separated
 by commas: ").split(',')

 plots = [sympify(expr.strip()) for expr in expressions]

 plot(*plots, (x, -10, 10))

Plotting with Customization Options

Here we demonstrate how SymPy’s plotting module provides powerful customization
options, making it easy to create clear and visually appealing plots directly from symbolic
expressions.

Here is an example of plotting with SymPy using a similar approach, where we customize the
colors of multiple plots and include a legend:

Code Example
from sympy import Symbol

49

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

from sympy.plotting import plot
Define the symbolic variable
x = Symbol('x')
Create the plot with multiple expressions
p = plot(2*x + 3, 3*x + 1, legend=True, show=False)
Customize the colors of each plot
p[0].line_color = 'b' # Blue for the first line
p[1].line_color = 'r' # Red for the second line
Add legend labels for clarity
p[0].label = 'y = 2x + 3'
p[1].label = 'y = 3x + 1'
Show the plot
p.show()

Brief explanation of the above lines of code:

● A symbolic variable x is created using Symbol('x').
● The plot function is used to plot the two linear expressions 2x+3 and 3x+1.
● The legend=True parameter is used to enable legends for the

plots.

● show=False allows customization of the plot before it is displayed.
● The line_color property of each plot object is set to 'b' (blue) and 'r' (red),

respectively.
● Labels are assigned to each plot using the label attribute to make the legend

meaningful.
● p.show() shows the plot with the customized settings.

Output:

The output will be a graph showing:

A blue line representing y=2x+3.

1. A red line representing y=3x+1.
2. A legend identifying each line by its equation.

50

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Now we will extending the above example by adding more functions:

code
p = plot(2*x + 3, 3*x + 1, x**2, legend=True, show=False)
p[0].line_color = 'b' # Blue
p[1].line_color = 'r' # Red
p[2].line_color = 'g' # Green for the quadratic function
p[0].label = 'y = 2x + 3'
p[1].label = 'y = 3x + 1'
p[2].label = 'y = x^2'
p.show()

Output:

The following table shows a list of plotting commands in SymPy:

 Table: A list of plotting commands in SymPy

51

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Operation Description SymPy Function

2D Plot Plots a single-variable function plot(f, (x, a, b))

Multiple
Functions Plot

Plots multiple functions on the
same graph

plot(f1, f2, (x, a, b))

Parametric
Plot

Plots a parametric curve plot_parametric((x_expr, y_expr), (t,
a, b))

3D Surface Plot Plots a 3D surface plot3d(f,(x,a,b),(y,c,d))

3D Parametric
Surface

Plots a parametric 3D surface plot3d_parametric_surface(x_expr,
y_expr, z_expr, (u, a, b), (v, c, d))

3D Parametric
Line

Plots a 3D parametric curve plot3d_parametric_line((x_expr,
y_expr, z_expr), (t, a, b))

Contour Plot Plots contour lines of a function plot_contour(f, (x, a, b), (y, c, d))

Implicit Plot Plots an implicit function
F(x,y)=0

plot_implicit (Eq(f(x, y), 0), (x, a, b),
(y, c, d))

Vector Field
Plot

Plots a vector field plot_vector_field ((fx,fy),(x, a, b), (y,
c, d))

Customizing
Plots

Modify labels, titles, and colors plot(f, xlabel="X-axis",
ylabel="Y-axis", line_color='red')

2.6 Worked Out Examples

Example - 1: Plot the linear equation using SymPy with minimal setup 𝑦 = 20𝑥 + 7
and default settings.

 Solution:

Code:
from sympy import Symbol
x = Symbol('x')
plot(20*x+7)
Output:

52

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Example - 2: Plot of the linear equation over the range with 𝑦 = 3𝑥 + 2 − 5 ≤ 𝑥 ≤ 5
the title "A Line", label the x-axis as "x" and the y-axis as "3x+2", without displaying
the plot immediately in SymPy.

Solution:

Code:
from sympy import *
x = symbols('x')
r = plot(3*x + 2, (x, -5, 5), title="A Line", xlabel='x',
ylabel='3x+2', show=False)
r.show()

Output:

Example - 3: Plot the following functions using SymPy on the same graph over the
interval (-1, 1):
 (a) ; (b) ; 𝑦 = 𝑥2 + 5𝑥 − 8 𝑦 = 𝑐𝑜𝑠(3𝑥)
 (c) ; (d) ; 𝑦 = 𝑠𝑖𝑛2(𝑥) 𝑦 = 6𝑥3 − 3𝑥4

 (e) . 𝑦 = 𝑐𝑜𝑠ℎ(3𝑥)

Solution:

53

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

from sympy import *
Define the symbolic variable
x = symbols('x')
Define the functions
f1 = x**2 + 5*x - 8 # y = x^2 + 5x - 8
f2 = cos(3*x) # y = cos(3x)
f3 = sin(x)**2 # y = sin^2(x)
f4 = 6*x**3 - 3*x**4 # y = 6x^3 - 3x^4
f5 = cosh(3*x) # y = cosh(3x)
Plot all functions in a single figure
p = plot(f1,f2, f3,f4,f5,
 (x, -1, 1), # Define x range
 show=True,
 legend=True)

Output:

Example - 4: How can you create a plot of the linear equation over the 𝑦 = 2𝑥 + 3
range , set a title and axis labels without displaying the plot immediately − 5 ≤ 𝑥 ≤ 5
in SymPy. Save the plot as an image file named 'line.png' and display the plot using
SymPy.

Solution:

Code:
from sympy import Symbol
from sympy.plotting import plot
Define the symbolic variable
x = Symbol('x')
Define the function y = 2x + 3
y = 2*x + 3
Create the plot
p = plot(y, (x, -5, 5), show=False, title="Graph of y = 2x
+ 3", xlabel="x-axis",ylabel="y-axis")
Save the plot as an image file

54

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

p.save('line.png')
Show the plot
p.show()

Output:

Example - 5: Plot the function using SymPy in the interval . 𝑓 (𝑥) = 𝑥𝑠𝑖𝑛 1
𝑥 [0, 4]

Save this image file named 'xsin.pdf' using SymPy.

Solution:

import sympy as sp
Define the symbolic variable and function
x = sp.symbols('x')
f = x * sp.sin(1/x)
Plot the function in the interval [0, 4] and save as PDF
p = sp.plot(f, (x, 0.1, 4), show=False, title="Plot of f(x) =
x*sin(1/x)")
p[0].line_color = 'b' # Set line color to blue
 p.save("xsin.pdf") # Save the plot as 'xsin.pdf'

Output: The following output is saved in the current directory as xsin.pdf.

55

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Example - 6: Plot the functions using SymPy in the interval for 𝑓
𝑛
(𝑥) = 𝑠𝑖𝑛𝑛 𝑥 [0, π]

n= 1, 2, 3, 4. Use different colors for different plots.

Solution:

from sympy import *
Define the symbolic variable
x = Symbol('x')
Define the functions f_n(x) = sin^n(x) for n = 1, 2, 3, 4
functions = [sin(x)**n for n in range(1, 5)]
Define colors for different plots
colors = ['red', 'blue', 'green', 'purple']
Create the plot
p = plot(*functions, (x, 0, pi), show=False, title="Plots of
f_n(x) = sin^n(x) for n = 1, 2, 3, 4", xlabel="x-axis",
ylabel="y-axis", legend=True)
Assign colors and labels to each function
for i, func in enumerate(functions):
 p[i].line_color = colors[i]
 p[i].label = f"n={i+1}"
Show the plot
p.show()

Output:

Example - 7: Plot the functions and on the 𝑓(𝑥) = 2𝑠𝑖𝑛 𝑥 + 3 𝑔(𝑥) = 2𝑐𝑜𝑠 𝑥 + 3
same graph over the interval (-2, 2) in black color for and in blue color for . 𝑓(𝑥) 𝑔(𝑥)
Label both the graphs for more clarity.

 Solution:

from sympy import *
Define the symbolic variable
x = Symbol('x')

56

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Define the functions
f = 2*sin(x) + 3
g = 2*cos(x) + 3
Plot with custom colors
p = plot(f, g, (x, -2, 2), show=False, title="Plot of f(x) and g(x)", xlabel="x-axis",
 ylabel="y-axis", legend=True)
Set colors for the functions
p[0].line_color = 'black' # f(x) in black
p[0].label = "f(x) = 2sin(x) + 3"
p[1].line_color = 'blue' # g(x) in blue
p[1].label = "g(x) = 2cos(x) + 3"
p.show()

Output:

Example - 8: Plot the functions in the range (1, 6) 𝑓(𝑥) = 2 𝑙𝑜𝑔 𝑥 + 𝑒𝑥2

+ 𝑠𝑖𝑛−1 𝑥
with green color and with proper x-label and y-label.
Solution:

Code:
from sympy import *
x = symbols('x')
f=2*log(x)+exp(x**2)+asin(x)
r = plot(f,(x,1,6),line_color='g', xlabel='x',
ylabel='y',show=False)
r.show()
Output:

57

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

Example - 10: Write code using SymPy to plot the functions and 𝑓(𝑥) = 2𝑥2 + 3

 on the same graph over the interval [-2, 2]. Also set a title and axis 𝑔(𝑥) = 2𝑥3 + 3
labels.
Solution:

from sympy import *
Define the symbolic variable
x = Symbol('x')
Define the functions
f = 2*x**2 + 3
g = 2*x**3 + 3
Plot the functions with custom line styles
p = plot(f, g, (x, -2, 2),
title="Plot of f(x) and g(x)",
xlabel="x-axis",
ylabel="y-axis",
show=True, legend=True)
Set labels for the functions
p[0].label = "f(x) = 2x² + 3"
p[1].label = "g(x) = 2x³ + 3"
Output:

58

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

 Exercise - II

1. How do you import the plot function from SymPy?
2. What is the basic syntax to plot a single-variable function using SymPy?
3. How can you plot multiple functions on the same graph in SymPy?
4. How do you add a title and labels to a plot in SymPy?
5. What is the difference between plot and plot_parametric in SymPy?
6. How can you specify a custom range for the variable while plotting in SymPy?
7. How do you change the color and style of a plotted function in SymPy?
8. How can you plot a piecewise function using SymPy?
9. What is the purpose of plot_implicit in SymPy, and how is it different from plot?
10. How can you use legend=True in a SymPy plot?
11. Write a Python program to plot the function over the range using 𝑓(𝑥) = 𝑥2 𝑥 ∈ [− 5, 5]

SymPy. Modify the plot to include labels for the x-axis and y-axis.
12. Plot the function over the interval and set a title for the 𝑓(𝑥) = 𝑒−𝑥𝑠𝑖𝑛(2𝑥) 𝑥 ∈ [− 2, 2]

plot. Save the plot as a PNG file and display the saved image.
13. Plot the parametric equations to visualize a unit circle. 𝑥 = 𝑐𝑜𝑠(𝑡), 𝑦 = 𝑠𝑖𝑛(𝑡)
14. Use plot_implicit to graph the equation and show the output. 𝑥2 + 𝑦2 = 4

15. Write SymPy command to plot the graph of in with the following options 𝑥3 − 4, 4[]

 a) give a title “This is a graph of ” 𝑦 = 𝑥3

 b) line color is purple

 c) fixed the size of the graph

16. Write SymPy command to plot the graph of

 in with color and thickness 𝑓 𝑥() = 𝑒𝑥2

+ 𝑙𝑛 𝑥2 + 2() − 0. 6(𝑥 + 1) [− 1, 5]

features.

17. Write SymPy command to plot the graph of in 𝑓 𝑥() = 𝑠𝑖𝑛ℎ 1−𝑥2() +𝑐𝑜𝑠ℎ 1−𝑥2()

1−𝑥+𝑥2 − 1, 1[]

with color, frame and axes label.

18. Write SymPy command to plot the ellipse . 𝑥2

2 + 𝑦2

4 = 10

19. Write SymPy code to plot the graph of in . 𝑟 = 1 + 2𝑐𝑜𝑠 3θ 0, 2π[]

20. Write SymPy commands which plots the graph of the parametric curve

 in and display the image. 𝑥 = 𝑠𝑖𝑛 𝑡 , 𝑦 = 𝑐𝑜𝑠 𝑡 + 𝑠𝑖𝑛 3𝑡() () 0, 2π[]

21. Write SymPy command to plot the graph of in with 𝑦 = 𝑥𝑠𝑖𝑛 1
𝑥 − 0. 1, 0. 1[]

specified size, color, aspect ratio, labelling axes, thickness and grid.

22. Write SymPy command to plot the graph of following function in one plot with

different color and appropriate legend

59

D
R
.

 S

U
S
A
N
T
A

M

A
N
D
A
L

 a) in 𝑓 𝑥() = 𝑒
− 𝑥2

2 𝑠𝑖𝑛 2𝑥() [− 3, 3]

 b) 𝑔 𝑥() = 𝑒
− 𝑥2

2 𝑠𝑖𝑛 𝑥
2()

 c) ℎ 𝑥() = 𝑒
− 𝑥2

2 𝑠𝑖𝑛 𝑥2

2()

 d) one big dot at with size 50. (1, 2)

23. Write SymPy command to plot the graph of in 𝑓 𝑥() = 𝑥−𝑠𝑖𝑛 𝑥 + 𝑙𝑜𝑔 𝑒−𝑥2

 [− 1, 1]

with title “ A plot” with position − 0. 5, 0. 1().

24. Write SymPy command to draw and shade the region enclosed by the curves

 𝑦 = 𝑥+1

𝑥2+3
 & 𝑦 = 𝑥4 − 𝑥.

60

	Table: Differences between PythonVariables and SymPy Variables
	Examples
	1. Python Variable

	11.5. Combining Operations: We can combine various operations for more complex workflows.
	Example: Write an expression, factored it, then expand it and calculate the value for 𝑥=2. Print the intermediate result separately.
	Example 1: Give an example to deal with Simple Polynomial
	Example 2: Give an example to deal with Fraction
	Example 3: Give an example to deal with Nested Expression
	Example 4: Enabling LaTeX Printing
	When we use solve(), it determines that 𝑥=10 because this value satisfies the equation10𝑥−11=9. The result is returned as a list, since an equation may have multiple solutions, for example, a quadratic equation typically has two solutions, in which case the list will contain all possible values.
	Additionally, solve() can return the result in the form of dictionaries, where each dictionary contains the variable as a key and its corresponding solution as the value. This format is particularly useful for solving simultaneous equations with multiple variables, as it clearly associates each solution with its respective variable.
	In SymPy, Eq stands for Equation. It is used to explicitly represent an equation where the left-hand side (LHS) is equal to the right-hand side (RHS). Syntax for Eq is Eq(lhs, rhs). Where lhs: Left-hand side of the equation.
	rhs: Right-hand side of the equation.
	Eq(lhs, rhs) represents lhs = rhs.
	For example:
	from sympy import Eq, symbols
	x = symbols('x')
	equation = Eq(x**2 - 4, 0)
	print(equation)
	This creates the equation 𝑥2 −4 = 0.
	Example: Solve the Linear Equation Solve 𝑥+12=15.
	Example: Solve the symbolic equation 𝑎𝑥+𝑏=0.

	Examples of CAS include SymPy (Python-based), Mathematica, Maple, Maxima, MATLAB (Symbolic Math Toolbox)
	Key Features of CAS include
	Use of SymPy vs Use of NumPy
	Table: Key Differences SymPy vs. Mathematica and Maple
	Python Code Using NumPy (Numerical Computation):

	
	
	Exercise - I

