CBCS Framework, University of Calcutta Proposed distribution of syllabus and Class load Course: CEMA, Semester-I Paper: CEMA-CC-1-1, Inorganic Chemistry

Serial	Number	Topic of the prescribed syllabus	Teaching faculty
number	of		
	lectures		
1.	2	Arrhenius concept, theory of solvent	Dr. A. K. Barik
		system (in H ₂ O, NH ₃ , SO ₂ and HF),	
		Bronsted-Lowry's concept, relative	
	_	strength of acids, Lux-Flood concept	
2.	2	Solvent levelling and differentiating	Dr. A. K. Barik
	_	effects. Pauling's rules	
3.	2	Thermodynamic acidity parameters,	Dr. A. K. Barik
		Drago-Wayland equation. Superacids,	
	_	Gas phase acidity and proton affinity	
4.	3	HSAB principle. Acid-base equilibria in	Dr. A. K. Barik
		aqueous solution (Proton transfer	
		equilibria in water), pH, buffer	
5.	3	Acid-base neutralisation curves;	Dr. A. K. Barik
		indicator, choice of indicators	
6.	2	Ion-electron method of balancing	Dr. J. Gangopadhyay
		equation of redox reaction. Elementary	
		idea on standard redox potentials with	
		sign conventions, Nernst equation (with	
		derivation).	- · · · · · · · · · · · · · · · · · · ·
7.	3	Concept of formal potential, Influence	Dr. J. Gangopadhyay
		of complex formation, precipitation and	
		change of pH on redox potentials.	
8.	2	Feasibility of a redox titration, redox	Dr. J. Gangopadhyay
		potential at the equivalence point, redox	
	2	indicators.	D 1 0 11
9.	2	Redox potential diagram (Latimer and	Dr. J. Gangopadhyay
		Frost diagrams) of common elements	
10	1	and their applications	D I C 11
10.	1	Disproportionation and	Dr. J. Gangopadhyay
		comproportionation reactions (typical	
1.1	2	examples).	D I C 11
11.	2	Solubility and solubility effect –	Dr. J. Gangopadhyay
		common ion effect and their	
		applications to the precipitation and	
		separation of common metallic ions as hydroxides, sulfides, phosphates,	
12.	3	carbonates, sulfates and halides.	Dr. I Concornadhysar
13.	2	Quantum numbers and their significance	Dr. J. Gangopadhyay
13.	2	Schrödinger's wave equation,	Dr. J. Gangopadhyay
		significance of ψ and ψ^2 .	

14.	2	Radial and angular wave functions for hydrogen atom. Radial and angular distribution curves	Dr. J. Gangopadhyay
15.	1	Shapes of s , p , d and f orbitals	Dr. J. Gangopadhyay
16.	2	Electroanalytical methods: Basic principle of pH metric, potentiometric and conductometric titrations. Techniques used for the determination of equivalence points. Techniques used for the determination of pKa values	Dr. J. Chakraborty
17.	6	Pauli's Exclusion Principle, Hund's rules and multiplicity, Exchange energy, Aufbau principle and its limitations, Ground state Term symbols of atoms and ions for atomic number upto 30.	Dr. J. Chakraborty