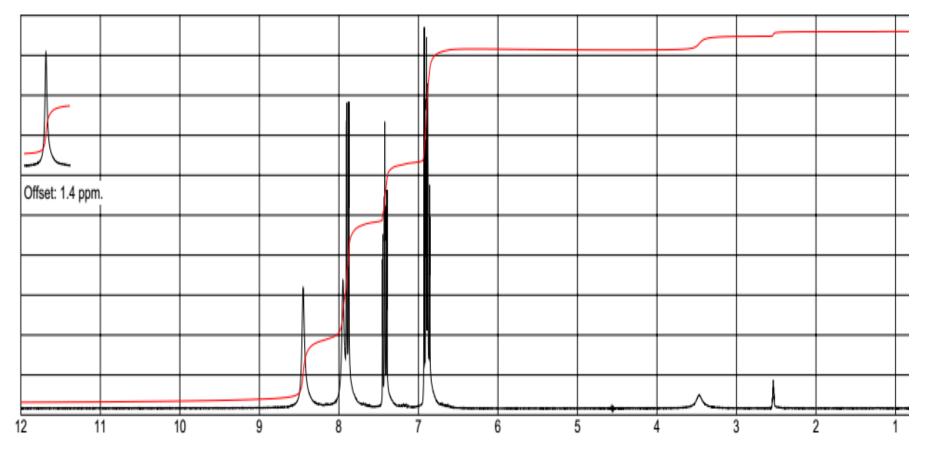
SPECTROSCOPIC ANALYSIS OF ORGANIC COMPOUNDS

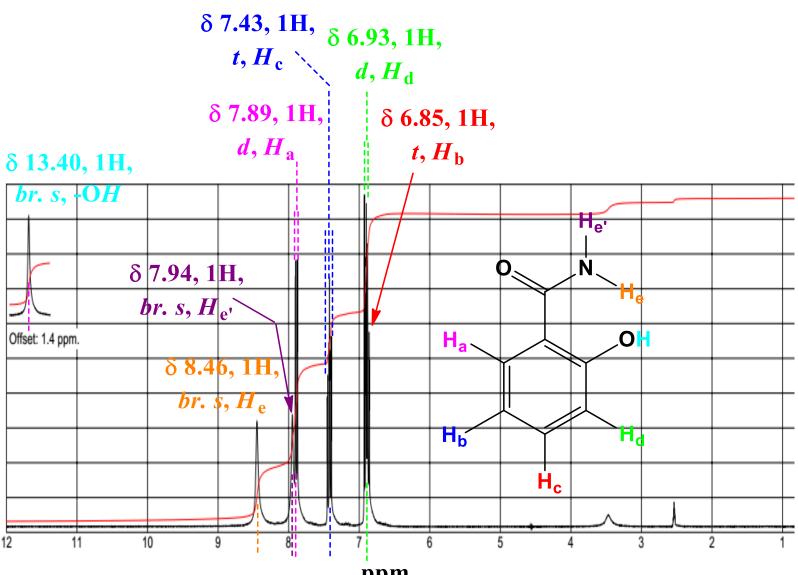
PART-3, PPT-3, SEM-5, CC-12P

Dr. Kalyan Kumar Mandal Associate Professor St. Paul's C. M. College Kolkata

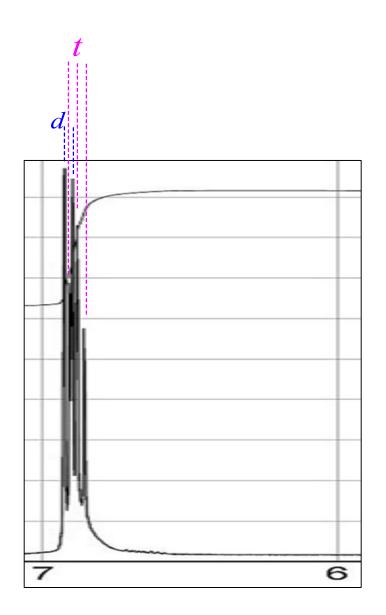

CONTENTS SPECTROSCOPIC ANALYSIS, PART-3

¹H NMR and IR Spectral Analysis of

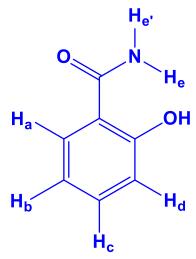
- 1. Salicylamide
- 2. 2'-Hydroxyacetophenone


¹H NMR Spectrum of Salicylamide

300 MHz, DMSO-d6: δ (in ppm): **13.40**, **8.46**, **7.94**, **7.89**, **7.43**, **6.93**, **6.85**

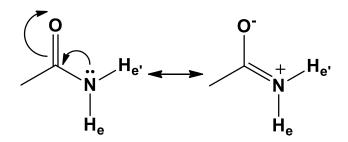

ppm

¹H NMR Spectrum of Salicylamide


ppm

¹H NMR Spectrum of Salicylamide

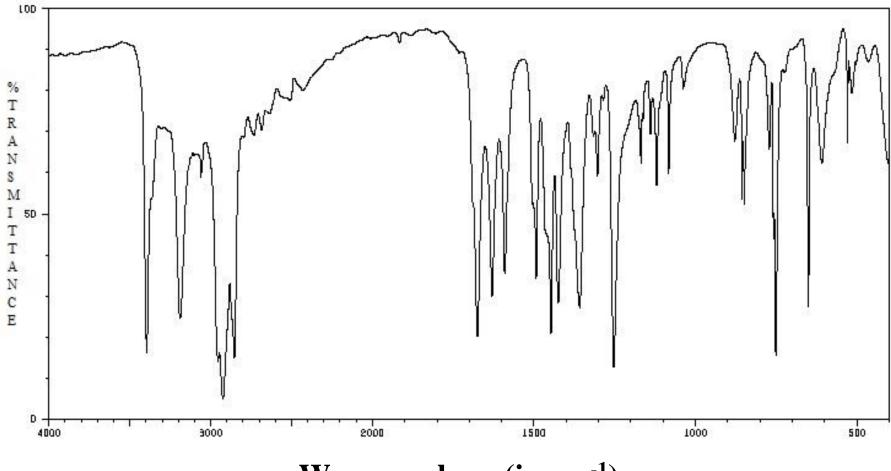
• Spectrum is recorded in 300 MHz instrument in DMSO-d₆ using TMS as internal standard


Chemical	Number of	Splitting	Probable
shift	hydrogens	pattern	assignment
(δ in ppm)			
13.40	1H	br. s	-OH
8.46	1H	br. s	H _e
7.94	1H	br. s	H _{e'}
7.89	1H	d	H _a
7.43	1H	t	H _c
6.93	1H	d	H _d
6.85	1H	t	H _b

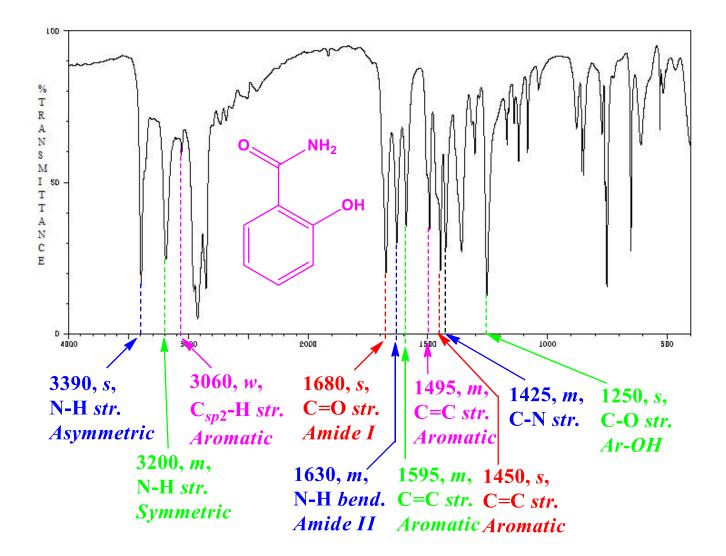
This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata

- 1. δ 13.4: 1H, *br. s*, Ar-OH: This proton is deshielded due to anisotropy of aromatic ring and conjugation that draws away the electron density from the oxygen of the phenolic-OH group. Attachment to electronegative oxygen atom (local diamagnetic effect) and intramolecular H-bonding also contribute to make this proton the most deshielded one.
- Broadness of the signal is due to hydrogen bonding and intermediate to rapid rate of proton exchange.
- 2. δ 8.46 and 7.94: Protons attached to N-atom of -NH₂ group; 1H each, *br. s*, *H*_e (lies *trans* to O-atom of -CONH₂ group) and *H*_{e'} (lies *cis* to O-atom of -CONH₂ group) respectively: Deshielding of these protons is due to the EW effect of C=O and local diamagnetic anisotropy of electronegative N-atom.

2. Due to mesomeric interaction within the amide moiety, the C-N bond acquires partial double bond character which is why the two amide protons H_e and $H_{e'}$ are in different chemical environment and they are non equivalent. Thus H_e and $H_{e'}$ resonate at different chemical shift values. The proton $H_{e'}$ is shielded compared to H_e proton due to anisotropy of C=O bond.


Both these protons appear as a broad singlet (*br*, *s*). The broadness of signal is due to (i) intermediate rate of proton exchange, and (ii) the protons couple to each other, and (iii) inherent broadening associated with spin active nitrogen nucleus.

- 3. δ 7.89:1H, *d*, *H*_a, proton ortho to -CONH₂: *H*_a is deshielded due to diamagnetic anisotropic effect of (i) the aromatic moiety (ring current effect) and ii) the amide carbonyl group. This is further deshielded by the EW (-**R** and -**I**) -CONH₂ group.
- H_a appears as a *doublet* as it couples with adjacent H_b proton. (*ortho*-coupling).
- 4. δ 7.43: 1H, *t*, *H*_c, proton para to -CONH₂ group: *H*_c proton is deshielded by the diamagnetic anisotropy of the aromatic moiety (ring current effect) and EW (-R and -I) -CONH₂ group which is para to it.
- H_c proton appears as a *triplet* as it couples with two *ortho* protons H_b and H_d with respect to it.


- 5. δ 6.93: 1H, *d*, *H*_d, proton ortho to -OH group: Though this proton is deshielded by the (i) diamagnetic anisotropy of the aromatic moiety (ring current effect) and (ii) EW effect of -CONH₂ group, yet, it is strongly shielded by the electron donating (+R > -I) phenolic-OH group. Therefore, *H*_d-proton resonates at a higher field compared to both *H*_a and *H*_c protons.
- *H*_d-proton appears as a *doublet* since it couples with the proton *H*_c (*ortho*-coupling).
- **6.** δ **6.85: 1H**, *t*, *H*_b, **proton** *para* **to -OH group:** Though this proton is deshielded by the (i) diamagnetic anisotropy of the aromatic moiety (ring current effect) and (ii) EW -CONH₂ group, yet, it is strongly shielded by the electron donating (+R > -I) phenolic-OH group.
- $H_{\rm b}$ -proton appears as a *triplet* since it couples with the protons $H_{\rm a}$ and $H_{\rm c}$ (both are *ortho*-coupling).

IR Spectrum of Salicylamide

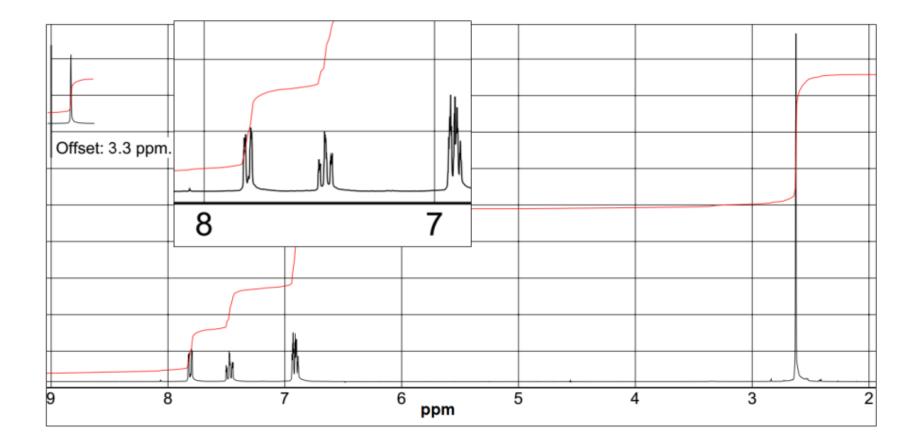
FT-IR (CCl₄): Wavenumbers (cm⁻¹): 3390, 3200, 3060, 1680, 1630, 1595, 1495, 1450, 1425, and 1250

Wavenumbers (in cm⁻¹)

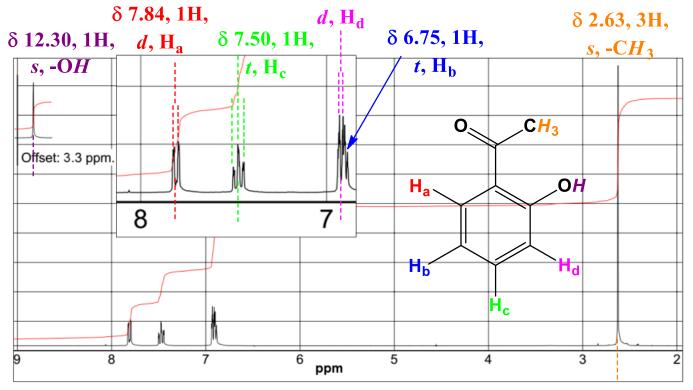
This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata

• Spectrum is recorded in CCl₄ solution.

Wavenumbers (cm ⁻¹)	Nature	Probable Assignment	
3390, 3200	s, m	N-H stretchings; Asymmetric and Symmetric	O C NH ₂
3060	w	C _{sp2} -H; Aromatic	Н ОН
1680	S	Aromatic C=O stretching; Amide-I	
1630	m	N-H bending; Amide-II	Н
1595, 1495, 1450	<i>m</i> , <i>m</i> , <i>s</i>	C=C stretchings;	H
		Aromatic skeletal vibrations	
1425	m	C-N stretching	
1250	S	C-O stretching; Ar-OH	

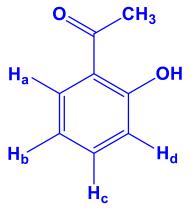

This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata

- 1. 3390, 3200: N-H stretchings, Asymmetric and Symmetric: These are the characteristic absorptions for AB_2 type of grouping (-NH₂) present in the molecule. Two bands are due to vibrational coupling. This absorption occurs at a higher wave number region because N-H bond contains a small atom H, so frequency (v) and hence wavenumber increases by Hooke's law.
- 2. 3060: C_{sp2} -H stretching: These absorptions are due to strong C_{sp2} -H bonds. The absorption at a higher region is due to the presence of small atom in the bond on one hand and hydrogen atom is attached to a sp^2 hybridized carbon atom on the other.
- 3. 1680: Aromatic C=O stretching: Carbonyl group is conjugated with nitrogen lone pair via the conjugative group, an aromatic ring in this case. As a result, due to mesomeric interaction, C=O bond assumes single bond character in the charged canonical form. Bond order of C=O decreases, and hence C=O absorption occurs at lower than 1715 cm⁻¹.


- **4. 1630: N-H bending, Amide-II:** This absorption is due to a bending vibration (N-H) and appears at a lower wave number region than that of C=O stretching
- **5. 1600, 1495, 1450: C=C stretchings:** The vibration due to the conjugated aromatic system (*aromatic skeletal vibrations*) appears at a lower wavenumber than that of the nonconjugated system due to lowering of C=C bond strength.
- 6. 1425: C-N stretching: This absorption appeared at lowerwave number region as (i) it is a single bond and (ii) the bond involves a higher reduced mass. However, this bond is stronger as carbon atom is a part of the aromatic ring.
- 7. 1250: C-O stretching of Ar-OH: Appearance at lower wave number of this bond is due to (i) the vibration involves a single bond and (ii) masses of both the constituent atoms are relatively large unlike C-H, O-H, etc.

This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata

¹H NMR Spectrum of 2'-Hydroxyacetophenone 300 MHz, CDCl₃ + DMSO-d6: δ (in ppm): 12.30, 7.84, 7.50, 6.92, 6.75 and 2.63

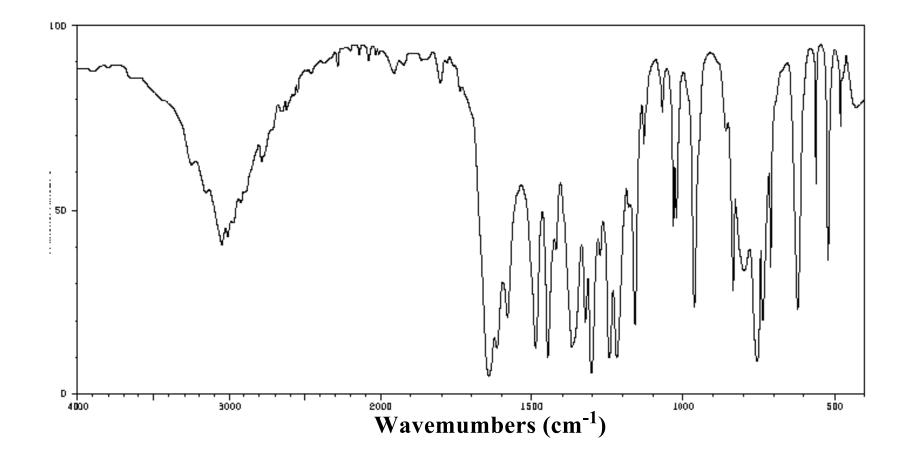


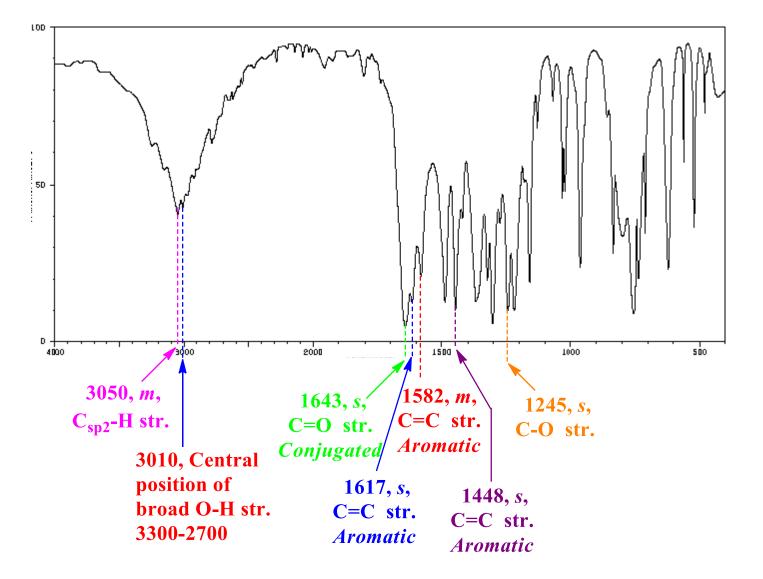
This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata

 Spectrum is recorded in 300 MHz instrument in CDCl₃ + DMSO-d6 using TMS as internal standard

Chemical shift	Number of	Splitting	Probable
(ð in ppm)	hydrogens	pattern	assignment
12.30	1H	S	-OH
7.84	1H	d	H _a
7.50	1H	t	H _c
6.92	1H	d	H _d
6.75	1H	t	H _b
2.63	3H	S	-COCH ₃

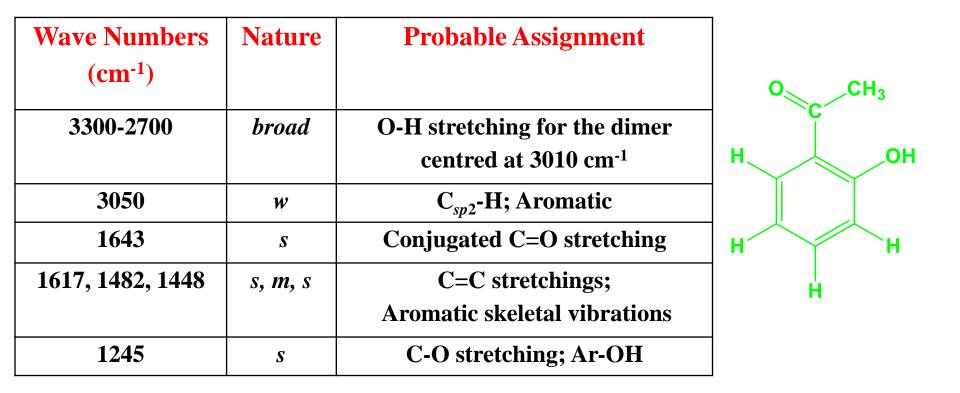
- 1. δ 12.3: 1H, *s*, Ar-OH: This proton is deshielded due to anisotropy of aromatic ring and conjugation that draws away the electron density from the oxygen of the phenolic-OH group. Attachment to electronegative oxygen atom (local diamagnetic effect) and intramolecular H-bonding also contribute to make this proton the most deshielded one.
- This proton appears as a *singlet* due to the absence of neighbouring interacting proton.
- 2. δ 7.84: 1H, *d*, *H*_a (proton ortho to -COCH₃ group): This proton is deshielded by the combined effect of diamagnetic anisotropy of the neighbouring carbonyl group and that of the aromatic ring (ring current effect), as well as the EW (-I and -R) effect of the -COCH₃ group.
- It appears as a *doublet* due to coupling with the proton H_b (*ortho*-coupling).


- 3. δ 7.5: 1H, t, H_c (proton para to -COCH₃ group): This proton is deshielded by the (i) diamagnetic anisotropy of aromatic ring (ring current effect), and EW (-I and -R) effect of the -COCH₃ group. It is less deshielded than H_a because it does not fall in the deshielding zone of the keto group.
- It appears as a *triplet* due to coupling with the two *ortho* protons,
 H_b and H_d with respect to it.
- 4. δ 6.92: 1H, *d*, *H*_d, proton ortho to -OH group: Though this proton is deshielded by the (i) diamagnetic anisotropy of the aromatic moiety (ring current effect) and (ii) EW effect of -COCH₃ group, yet, it is strongly shielded by the electron donating (+R > -I) effect of phenolic-OH group. Therefore, *H*_d-proton resonates at a higher field compared to *H*_a and *H*_c protons.
- *H*_d-proton appears as a *doublet* since it couples with the proton *H*_c (*ortho*-coupling).


- **5.** δ **6.75: 1H**, *t*, *H*_b, **proton** *para* **to -OH group:** Though this proton is deshielded by the (i) diamagnetic anisotropy of the aromatic moiety (ring current effect) and (ii) EW effect of –COCH₃ group, yet, it is strongly shielded by the electron donating (+R > -I) effect of phenolic-OH group.
- $H_{\rm b}$ -proton appears as a *triplet* since it couples with the protons $H_{\rm a}$ and $H_{\rm c}$ (both are *ortho*-coupling).
- δ 2.58: 3H, s, -COCH₃: The ketomethyl protons are deshielded due to EW effect (-I and -R) of C=O group of -COCH₃ group. Diamagnetic deshielding effect of the C=O group of -COCH₃ also plays a part.
- This protons appear as a *singlet* as they have no neighbouring hydrogen to couple with.

This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata

IR Spectrum of 2'-Hydroxyacetophenone


FT-IR (Liquid Film): Wavenumbers (cm⁻¹): 3300-2700, 3050, 1643, 1617, 1582, 1448, and 1245

This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata

• Spectrum is recorded in liquid film solution.

This Lecture is prepared by Dr. K. K. Mandal, SPCMC, Kolkata

- **1. 3300-2700: O-H stretching of the dimer:** This broad absorption band for O-H bond centres near 3010 cm⁻¹. Vibrational frequency associated with the O-H bond is very high because (i) O-H bond is very strong and (ii) this bond contains a small atom hydrogen (reduced mass decreases, frequency increases). Broad signal is due to H-bonding. Hydrogen bonding causes lengthening of the original O-H bond and it becomes weaker. Hence force constant of O-H bond decreases.
- 2. 3050: C_{sp2} -H stretching: These absorptions are due to strong C_{sp2} -H bonds. The absorption at a higher region is due to the presence of small atom in the bond on one hand and hydrogen atom is attached to a sp^2 hybridized carbon atom on the other.

- **3. 1643: Conjugated C=O stretching:** Carbonyl group is conjugated with nitrogen lone pair via the conjugative group, an aromatic ring in this case. As a result, due to mesomeric interaction C=O bond assumes single bond character in the charged canonical form. Bond order of C=O bond decreases and hence C=O absorption occurs at lower than 1715 cm⁻¹.
- **4. 1617, 1582, 1448: C=C stretchings:** The vibration due to the conjugated aromatic system (*aromatic skeletal vibrations*) appears at a lower wave number than that of the nonconjugated system due to lowering of C=C bond strength.
- **5. 1245: C-O stretching of Ar-OH:** Appearance at lower wave number of this bond is due to (i) the vibration involves a single bond and (ii) masses of both the constituent atoms are relatively large unlike C-H, O-H, etc.