Elementary Band Theory
Introduction

J How to distinguish between metal and semiconductor/insulator ?
J What is the origin of positive Hall coefficients?
- Well, free electron theory of solids does not answer to these questions!

1 A productive theory comes from band theory of solids

Syllabus: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator.
Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (4 probe method) & Hall

coefficient



Bloch Theorem

The plane wave solution e*** for the wave

functions of the free electron model go over

; for the periodic potential to solutions of the
form ¥w(x) = u,(x)e’™™ where u,(x) has

the periodicity of the lattice (if the lattice has

a periodicity a, u,(x + a) = ui(x))

Y (x): Bloch function




Kronig-Penney Model
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Kronig-Penney Model
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Kronig-Penney Model
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Kronig-Penney Model

dzul dul dzuz du2
: 2 2 _ : ) 5 _
152 + Zlka-l- (a* —k“)u; =0 ...(3) o + Zlkﬁ_ (B2 + k?)u, = 0 ...(4)
u(x) = Aella—lx 4 po—ila+i)x Uy (x) = CeB-i)x 4 pp—(B+ik)x
. e
Boundary conditions:
| v
u1(0) = u(0) Uy (a) = uy(—b)
duy| _du duy| _dup il
dx | _, dx| _, dx | _. dx| __, = o -

,BZ—CZZ

2af
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Kronig-Penney Model
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Kronig-Penney Model
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Kronig-Penney Model

Implications:

s
A og SIn Qo+ Cos qa

(a) The energy spectrum of the electrons consists of a number of
1llowed energy bands separated by forbidden regions

Sin aa

~3T - 0 3
+cosaa =coska ...(6) | XV o WVA """""" Bﬁ“‘ 5 o T

aa

(b) The width of the allowed energy bands increases with 1n-
creasing values of aa, 1.e., with increasing energy, this 15 a consequence
of the fact- that the first term of (10-24)
decreases on the average with increasing au

Solid State Physics, A J Dekker



Kronig-Penney Model

Implications:

(c) The width of a particular allowed band
decreases with increasing P, i.e., with increasing
"*binding energy’’ of the electrons. In the extreme
case for which P— 00, the allowed regions become
infinitely narrow and the energy spectrum be-
comes a line spectrum. In that case, (10-24) has
only solutions if sinaa = 0, i.e,, if aa = | nw
withn — 1, 2, 3,... According to this and (10-16),
the energy spectrum is then given by

0 1 0
nm?h? P/éx «—  —» 4» /P

E, = for P » o
" omaz O

This recognizes as the energy levels of a particle in a constant potential box of atomic dimensions.
Physically, this could be expected because for large P, tunneling through the barriers becomes
Improbable.

Solid State Physics, A J Dekker



Kronig-Penney Model

Implications:

These conclusions are summanzed in Fig. 10-3, where the energy
spectrum is given as function of P. For P - 0, we simply have the free
electron model and the energy spectrum is (quasi) continuous ; for P = o,
a line spectrum results as discussed under (c) above. For a given value of P
the position and width of the allowed and forbidden bands are obtained by
erecting a vertical line; the shaded areas correspond to allowed bands.

From (10-24) it is possible also to obtain the energy £ as function of the
wave number & ; the result is represented i1n Fig. 10-4a. Tl'm leads us to the | —
conclusion that ‘ 0 1 r

Pl/éx - — 4w | P

mVyba
= —

Solid State Physics, A J Dekker



Kronig-Penney Model

Implications:

(d) Discontinuities in the E — k curve: k = n=123,..

nr
a
These k-values define the boundaries of the first, second, etc. Brillouin
zones. It must be noted that Fig. 10-4a gives only half of the complete E(k)
curve; thus the first zone extends from --m/a to +-m/a. Similarly, the
second zone consists of two parts; one extending from =/a to 2n/a, as
shown, and another part extending between —=/a and —2n/a.

Solid State Physics, A J Dekker



Implications:

Kronig-Penney Model

(e) Within a given energy band, the energy is a periodic function of k. For example, if one replaces
k by k + 2nn/a, where n is an integer, cos ka remains the same. In other words, k is not uniquely
determined. It is therefore frequently convenient to introduce the “reduced wave vector” which Is

limited to the region:

>
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(a) Repeated zone scheme
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Kronig-Penney Model

Implications:
(f) Number of possible wave functions per band:

Boundary condition: Cyclic or periodic boundary conditions — same as in the theory of elastic waves

In a chain of atoms: Y(x + L) = ¥ (x)

= elkx+L)y, (x + L) = e**u, (x)

= ekl =1 =" = k = 2nn/L,n = +1,+2, +3,.

Number of possible wave functions in the range dk: dn = (L/2n)dk

T/a L
T f (L/2m)dk == =N

—1t/a

Solid State Physics, A J Dekker



Kronig-Penney Model

Implications:

Af) The total number of possible wave functions in any energy band is:
equal to the number of unit cells N.

Now, as a result of the spin of the electrons and the Pauli exclusion
principle each wave function can be “occupied™ by at most two electrons.®
Thus each energy band provides place for a maximum number of electrons
equal to twice the number of unit cells. In other words, if there arc 2N
electrons in a band, the band is complete _Zﬁ“ﬂr This conclusion, as we

R —p——r] i - dﬂ_*

shall see ‘below, has fa ar-reaching consequences for the dlstmctmn between
metals, ma-ulatars and semiconductors. *

Solid State Physics, A J Dekker



Velocity:

(%

da)_ldE

dk ~ hdk

Motion of Electrons

This in itself shows the importance of the E
versus kK curves. In the case of free electrons
E =~ k*k*[2m, and (10-33) simply leads to the
identity r — fik/m = pfm. In the band theory,
however, E is in general not proportional to 2,
as may be seen from Fig. 10-4. Employing an
E(k) curve such as represented in Fig. 10-5a, one
obtains, according to (10-33) for the velocity as
function of k, a curve of the type illustrated in
Fig. 10-5b. (Note that for free electrons v 1s
proportional to k.) At the top and bottom of
the cnergy band r = 0, because from the peri-
odicity of the E(k) curves it follows that there
dE[dk = 0. The absolute value of the velocity
reaches a maximum for k = k,, where k, cor-
responds to the inflection point of the E(k) curve.
1t is of importance to note that beyond this point
the velocity decreases with increasing energy, a
feature which 1s altogether different from the
behavior of free electrons. 2~ = ' - ™ I3
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Motion of Electrons , |

Effective Mass: : ’ :
dE = (eF)(vdt) = (eF) (1 dE) dt N
h dk |
dE eF dE ; L\
:ﬁdk Wﬁdt . 11 ]I
dk eF .
=>— = N am
dt & :\j
dv 1d (dE\ 1d?Edk eFd*E _eF @ ——1
“Tdt " hadt (E) hdk2zdt hZdkZ m \: r
I
. .o, [d°E - m _ m(d’E | |
m —fl/(m) fk_m*_hz(dk2> : by {
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ZAEN

-r/a 0 xla
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Motion of Electrons , |

| E”

Effective Mass: m* = h2/ ﬂ | :

dk? N /

Thus the effective mass is determined by d*Efdk?®; this result indicates " ]| l,":

once more the importance of the E(k) curves for the motion of the electrons. : |

In Fig. 10-5¢ the effective mass is represented as a function of k § this ! i
{b) 4

curve shows the interesting feature that m* is positive in the lower half of
the energy band and negative in the upper half. At the inflection points in !

the E(k) curves, m™ becomes infinite. Physically speaking, this means '\
that in the upper half of the band the electron behaves as a positively ., | |
charged partic]:ﬁ’as will be explained further in Sec. 10-6. One arrives at |
the same conclusion by considering the o(k) curve and making use of \
(10-35). Suppose an electron starts at k -= 0; when an electric field is :

applied, the wave vector increases linearly with time. Until the velocity ot |
reaches its maximum value, the electron is accelerated by the field; ]I/' |
beyond the maximum, however, the same field produces a decrease in v, @ — r
i.e., the mass must become negative in the upper part of the band. /,1 r&

-r/a 0 x/a

Solid State PhySiés, A J Dekker



Motion of Electrons ,

Effective Mass: I |

(a}

“f 1t is frequently convenient to introduce a factor

_ﬂ = mim* = l:mfﬁ‘}[d'f.‘,’n‘.‘k'] (10-39) ,
P e o el . i . |
where ﬁ 15 a measure fur the extent to which an electron in state & is “free."” " ‘/J]\

If m* is large, f, is small, i.e., the particle behaves as a “heavy™ partlr.'lt ‘K*y
When f, = 1. the electron behaves as a free electron, Note that f} is | |

positive in the lower half of the band and negative in the upper half, as © f——

|

shown in Fig. 10-5d. \: E‘(
|

!

|

[

r
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Motion of Electrons

Effective Mass:

" may be mentioned here that when the above treatment is extended to
three dimensions, the effective mass may be represented by

1/m* = (1/k*) grad, grad, E(k)

where grad, grad, E(k) is a tensor with nine components of the general

form ¢*E[dk, ok, with i, j = x, v, 2.9

(m*); = hz(

0%E
0k;0k;

~1
) (i,] €Ex,9,2)

(c) Dr. P. Mandal

Solid State Physics, A J Dekker



Motion of Electrons

Effective Mass:

Problem: The dispersion relation of electrons in a 3d lattice is given by E; = acosk,a +
p coskya + vy cos k,a, where a is the lattice constant and «, 8,y are constants. Find the effective

mass of tensor at the corner of the first Brillouin zone (/a, w/a,w/a). [CU — 2016]

(m*);; = h* O%E \" i€

m lj aklak] (l'] X,y,Z)

9*E\" h?

(m*) ., = h? (6k§> = h?(—aa? cos k,a)~? — =—
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92E\ " 1 h2
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Motion of Electrons
Effective Mass:

(m*);; = h? PENT €
m lj aklak] (l )] nyJZ)
* [ 9*E \7 (0 | -1
(m )xy =h akxaky =h E (—Basink,a) = 00
kx=ky=kz=m/a

kx=ky=k,=m/a

Similarly’ (M*)zx = (M")y, = (m*)zy = (m*)yz = (m*)yx = 0

1/aa o 00

h? 1 a’
* _ Or, _
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0 oe) 1/y

S O R
O™ O
< © O
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Motion of Electrons

Problem: Consider the dispersion relation of tightly bound electrons in a linear lattice with atomic
separation a as E = Ey, —a — 2y coska (a, Ey, y are constants). Obtain an expression of the
reciprocal of effective mass (m*) as a function of E. Sketch 1/m* as a function of E. Also, find the
maximum velocity of the electrons. [CU — 2015]

E=E;—a—2ycoska

1 1d°E 1 2ya? 2
= =37 = 7z (F2V)(-aacoska = —m—coska = 5 (B —a — E)
V= P ﬁ(Zyasm ka) = vyg = —
Emaszkz_n/azEO_a‘l'zy Emm=Ek=0=EO—a—2y

Bandwidth: E,,; — Emmax = 4Y




Conductor, Semiconductor & Insulator

O Band theory of solids leads to the possibility of distinguishing between conductors,

semiconductors and insulators.
1 Consider a particular energy band to be filled up with electrons up to a certain value k;.

O In order to study the effect of an external electric field, we need to know how many electrons are

equivalent to ‘free electrons’ in the band containing certain number (say, N) of electrons.

L The answer to this point, presumably, leads to draw a conclusion on the conductivity associated to

this particular energy band. )

> k

l |
| |
1 < i
-rla -k ky r/a

(c) Dr. P. Mandal
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Conductor, Semiconductor & Insulator

The effective number of free electrons in the energy band Nerr = Y fx

For a 1D lattice of length L, the number of states (excluding spin) within the interval dk i1s L dk/2n

() e (2l - (22

—kq 0
.. m _m d?E
'f"_m*_hz dk?2

O Nsr inacompletely filled band vanishes because (dE/dk)y. =r/q = 0

d N.fr reaches a maximum for a band filled to the inflection point of the E — k curve as dE/dk Is

maximum at the inflection point.

(c) Dr. P. Mandal

Solid State Physics, A J Dekker



Conductor, Semiconductor & Insulator

 Thus, a solid having certain energy bands completely filled and other bands completely empty,

behaves as an insulator.

d On the other hand, a solid containing an incompletely filled energy band shows

metallic/conductor character.
. A

Conduction band

Energy

Insulator Semiconductor Metal
(c) Dr. P. Mandal



Conductor, Semiconductor & Insulator

Fig. 10-7a can occur actually only at absolute zero, when the crystal is in
its lowest energy state. At temperatures different from zero, some electrons
from the upper filled band will be excited into the next empty band
(“‘conduction band”’) and conduction becomes possible. If the forbidden
energy gap is of the order of several electron volts, however, the solid will
remain an “insulator’’ for all pract:cal purposes. (An example is diamond,
for which the forbidden gap is about 7 ev. )For a small gap width, say
about 1ev, the number of thermally excited electrons may become
appreciable and in this case one speaks of an intrinsic semiconductor.
Examples are germanium and siliconi, ‘It is evident that the distinction
between insulators and intrinsic semiconductors is only a quantitative one.
In fact, all intrinsic semiconductors are insulators at T = 0, whereas all
insulators may be considered semiconductors at 7 > 0. It may be noted
here that the conductivity of semiconductors in general increases with
increasing temperature, whereas the conductivity of metals decreases



Concept of Hole

O In an intrinsic semiconductor a certain number of electrons are thermally exited from the upper
filled band into the conduction band at temperature above OK, leaving some of the states in the

normally filled band vacant. These unoccupied states lie near the top of the filled band.

 Consider a single unoccupied state — the ‘hole’, in the filled band of a 1D lattice and consider its

Influence on the collective behaviour of this band in presence of an external electric field.

O In absence of external electric field, the current due to all the electrons in a completely filled band

I=—€21}>i=—€ 5]+261]:O

i £

Solid State Physics, A J Dekker



Concept of Hole

If the jth electron were missing ' = —e Z v = ev;

L#]

In presence of an external electric field F, the rate of change of the current I' is

dI'’  dv;  e*F _dv _ eF
it~ “de T m dt _ m*

As the vacant state (‘hole’) lies near the top of the band, the effective mass m; is negative which

makes dI'/dt positive. In other words, a state in which an electron is missing behaves as a

‘positive hole’ with an effective mass |m]

(c) Dr. P. Mandal
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Hall Effect

 The Hall effect is the production of a voltage difference (the Hall voltage V/;;) across a conductor
or semiconductor, transverse to an electric current (J,.) in the conductor/semiconductor and to an
applied magnetic field (B,) perpendicular to the current.

1 Discovered by Edwin Hall in 1879.

 The Hall coefficient is defined as the ratio of the induced electric field to the product of the

current density and the applied magnetic field.

Ey

A

O Ry Is the characteristic of the material from which the conductor/semiconductor is made, since

Ry

Its value depends on the type, number, and properties of the charge carriers that constitute the

current.

https://en.wikipedia.org/wiki/Hall effect
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Hall Effect

Metals: F=E% =5 =—vs

-

vy

= Bz,q = —e

F, = q(# x B) = evB(% x 2) = —evBj)

.1

F_>H = —eEH = _P_)'L = eUBy = EH = _UBy

J = —ne® = nev®

Ey —VB 1
RH = = = —_——
J.B, (nev)B ne

Hall Coefficient and Mobility:
Ey = uEB = Ry, B,

= uEB = Ry, (¢E)B

v =uk Ey = —vB = —uEB

ﬁl,l:O'RH




Hall Effect

Hall Coefficient — Experimental Determination:

EH — RH]sz
I Vy
Jx E:EH =7
Vi
Ey d Vyb




Hall Effect

Semiconductors:

Solid State Physics: S P Kuila



Hall Effect

Semiconductors:

Solid State Physics: S P Kuila



Hall Effect

Semiconductors:

hysics: S P Kuila



Hall Effect

Applications:

Physics: Gupta & Islam
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