
Introduction

❑ How to distinguish between metal and semiconductor/insulator ?

❑ What is the origin of positive Hall coefficients? 

❑ Well, free electron theory of solids does not answer to these questions!

❑ A productive theory comes from band theory of solids

Elementary Band Theory

Syllabus: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator. 

Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (4 probe method) & Hall 

coefficient



Bloch Theorem

𝑉 𝑥 + 𝑎 = 𝑉(𝑥)

𝑥

The plane wave solution 𝑒𝑖𝑘𝑥 for the wave 

functions of the free electron model go over 

for the periodic potential to solutions of the 

form 𝜓 𝑥 = 𝑢𝑘(𝑥)𝑒𝑖𝑘𝑥  where 𝑢𝑘(𝑥)  has 

the periodicity of the lattice (if the lattice has 

a periodicity 𝑎, 𝑢𝑘 𝑥 + 𝑎 = 𝑢𝑘(𝑥))

𝜓 𝑥 : Bloch function
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V0: Large

 b: small

𝑉 𝑥 = −
𝑍𝑒2

4𝜋𝜀0𝑥
 

𝑉 𝑥 + 𝑎 = 𝑉(𝑥)

𝑥

𝑉 𝑥 = 𝑉0 for −𝑏 < 𝑥 < 0

𝑉 𝑥 = 0     for 0 < 𝑥 < 𝑎

𝑉 𝑥 = 𝑉(𝑥 + 𝑎 + 𝑏)

Kronig-Penney Model



Kronig-Penney Model

𝑑2𝜓1

𝑑𝑥2
+

2𝑚𝐸

ℏ2
𝜓1 = 0 ⇒

𝑑2𝜓1

𝑑𝑥2
+ 𝛼2𝜓1 = 0 … (1)

𝑑2𝜓2

𝑑𝑥2
+

2𝑚

ℏ2
𝐸 − 𝑉0 𝜓2 = 0 ⇒

𝑑2𝜓2

𝑑𝑥2
− 𝛽2𝜓2 = 0 … (2)

𝜓1(𝑥) = 𝑒𝑖𝑘𝑥𝑢1(𝑥)

𝜓2(𝑥) = 𝑒𝑖𝑘𝑥𝑢2(𝑥)

𝛼2 =
2𝑚𝐸

ℏ2
, 𝛽2 =

2𝑚

ℏ2
(𝑉𝑜 − 𝐸)

III
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𝑑2𝜓1

𝑑𝑥2
+ 𝛼2𝜓1 = 0 … (1)

𝜓1(𝑥) = 𝑒𝑖𝑘𝑥𝑢1(𝑥)

𝑑𝜓1

𝑑𝑥
=  𝑒𝑖𝑘𝑥

𝑑𝑢1

𝑑𝑥
+ 𝑖𝑘 𝑒𝑖𝑘𝑥𝑢1

Kronig-Penney Model

𝑑2𝜓1

𝑑𝑥2
=  𝑒𝑖𝑘𝑥

𝑑2𝑢1

𝑑𝑥2
+ 𝑖𝑘𝑒𝑖𝑘𝑥

𝑑𝑢1

𝑑𝑥

 +𝑒𝑖𝑘𝑥
𝑑𝑢1

𝑑𝑥
− 𝑘2 𝑒𝑖𝑘𝑥𝑢1

𝑑2𝑢1

𝑑𝑥2
+ 2𝑖𝑘

𝑑𝑢1

𝑑𝑥
+ 𝛼2 − 𝑘2 𝑢1 = 0 … (3)

𝑑2𝜓2

𝑑𝑥2
− 𝛽2𝜓2 = 0 … (2)

𝜓2(𝑥) = 𝑒𝑖𝑘𝑥𝑢2(𝑥)

𝑑2𝑢2

𝑑𝑥2
+ 2𝑖𝑘

𝑑𝑢2

𝑑𝑥
− 𝛽2 + 𝑘2 𝑢2 = 0 … (4)



Kronig-Penney Model

𝑢1(𝑥) = 𝐴𝑒𝑖 𝛼−𝑘 𝑥 + 𝐵𝑒−𝑖 𝛼+𝑘 𝑥 𝑢2(𝑥) = 𝐶𝑒 𝛽−𝑖𝑘 𝑥 + 𝐷𝑒− 𝛽+𝑖𝑘 𝑥

𝑑2𝑢1

𝑑𝑥2
+ 2𝑖𝑘

𝑑𝑢1

𝑑𝑥
+ 𝛼2 − 𝑘2 𝑢1 = 0 … (3)

𝑑2𝑢2

𝑑𝑥2
+ 2𝑖𝑘

𝑑𝑢2

𝑑𝑥
− 𝛽2 + 𝑘2 𝑢2 = 0 … (4)

Boundary conditions:

)𝑢1 0 = 𝑢2(0 )𝑢1 𝑎 = 𝑢2(−𝑏

ቤ
𝑑𝑢1

𝑑𝑥
𝑥=0

= ቤ
𝑑𝑢2

𝑑𝑥
𝑥=0

ቤ
𝑑𝑢1

𝑑𝑥
𝑥=𝑎

= ቤ
𝑑𝑢2

𝑑𝑥
𝑥=−𝑏

𝛽2 − 𝛼2

2𝛼𝛽
sin ℎ𝛽𝑏 sin 𝛼𝑎 +  cos ℎ𝛽𝑏 cos 𝛼𝑎 =  cos )𝑘(𝑎 + 𝑏  … (5)

III
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Kronig-Penney Model

𝛼2 =
2𝑚𝐸

ℏ2

𝛽2 =
2𝑚

ℏ2
𝑉𝑜 − 𝐸

Consider 𝑉0 very large but 𝑏 very small such that 𝑉0𝑏 is finite

𝛽2 − 𝛼2 =
2𝑚

ℏ2
𝑉𝑜 − 2𝐸 ≈

2𝑚

ℏ2
𝑉0

sinh 𝛽𝑏 ≈  𝛽𝑏 cosh 𝛽𝑏 ≈ 1 

2𝑚𝑉0

ℏ2

𝛽𝑏

2𝛼𝛽
sin 𝛼𝑎 + cos 𝛼𝑎 = 𝑐𝑜𝑠 𝑘𝑎 

2𝑚𝑉0𝑏𝑎

2ℏ2

 sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎 

𝑃
 sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎 … (6)

𝑃 =
𝑚𝑉0𝑏𝑎

ℏ2

𝛽2 − 𝛼2

2𝛼𝛽
sin ℎ𝛽𝑏 sin 𝛼𝑎 +  cos ℎ𝛽𝑏 cos 𝛼𝑎 =  cos )𝑘(𝑎 + 𝑏  … (5)
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Kronig-Penney Model

𝑃
 sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎 … (6) 𝑃 =

𝑚𝑉0𝑏𝑎

ℏ2



Kronig-Penney Model

Implications:

Solid State Physics, A J Dekker

𝑃
 sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎 … (6)



Kronig-Penney Model

𝐸𝑛 =
𝑛2𝜋2ℏ2

2𝑚𝑎2
 for 𝑃 → ∞

This recognizes as the energy levels of a particle in a constant potential box of atomic dimensions. 

Physically, this could be expected because for large 𝑃 , tunneling through the barriers becomes 

improbable. 

Implications:

Solid State Physics, A J Dekker

𝑃 =
𝑚𝑉0𝑏𝑎

ℏ2



Kronig-Penney Model

Implications:

Solid State Physics, A J Dekker

𝑃 =
𝑚𝑉0𝑏𝑎

ℏ2



Kronig-Penney Model

Implications:

(d) Discontinuities in the 𝐸 − 𝑘 curve: 𝑘 =
𝑛𝜋

𝑎
,  𝑛 = 1, 2, 3, …

Solid State Physics, A J Dekker



Kronig-Penney Model

Implications:

(e) Within a given energy band, the energy is a periodic function of 𝑘. For example, if one replaces 

𝑘 by 𝑘 + 2𝜋𝑛/𝑎, where 𝑛 is an integer, cos 𝑘𝑎 remains the same. In other words, 𝑘 is not uniquely 

determined. It is therefore frequently convenient to introduce the “reduced wave vector’’ which is 

limited to the region:

−
𝜋

𝑎
≤ 𝑘 ≤

𝜋

𝑎

Solid State Physics, A J Dekker



Kronig-Penney Model

Implications:

(f) Number of possible wave functions per band: 

Boundary condition: Cyclic or periodic boundary conditions – same as in the theory of elastic waves 

in a chain of atoms: 𝜓 𝑥 + 𝐿 = 𝜓(𝑥)

⇒ 𝑒𝑖𝑘 𝑥+𝐿 𝑢𝑘 𝑥 + 𝐿 = 𝑒𝑖𝑘𝑥𝑢𝑘 𝑥

⇒ 𝑒𝑖𝑘𝐿 = 1 = 𝑒𝑖2𝑛𝜋 ⇒ 𝑘 = 2𝑛𝜋/𝐿, 𝑛 = ±1, ±2, ±3, …

Number of possible wave functions in the range 𝑑𝑘:     𝑑𝑛 = 𝐿/2𝜋 𝑑𝑘

𝑛𝑚𝑎𝑥 = න
−𝜋/𝑎

𝜋/𝑎

𝐿/2𝜋 𝑑𝑘 =
𝐿

𝑎
= 𝑁

Solid State Physics, A J Dekker



Kronig-Penney Model

Implications:

Solid State Physics, A J Dekker



Motion of Electrons

Velocity:

𝑣 =
𝑑𝜔

𝑑𝑘
=

1

ℏ

𝑑𝐸

𝑑𝑘

Solid State Physics, A J Dekker



Motion of Electrons

Effective Mass:

)𝑑𝐸 = (𝑒𝐹)(𝑣𝑑𝑡 = (𝑒𝐹)
1

ℏ

𝑑𝐸

𝑑𝑘
𝑑𝑡

⇒
𝑑𝐸

𝑑𝑘
𝑑𝑘 =

𝑒𝐹

ℏ

𝑑𝐸

𝑑𝑘
𝑑𝑡 

⇒
𝑑𝑘

𝑑𝑡
=

𝑒𝐹

ℏ
 

𝑎 =
𝑑𝑣

𝑑𝑡
=

1

ℏ

𝑑

𝑑𝑡

𝑑𝐸

𝑑𝑘
=

1

ℏ

𝑑2𝐸

𝑑𝑘2

𝑑𝑘

𝑑𝑡
=

𝑒𝐹

ℏ2

𝑑2𝐸

𝑑𝑘2
≡

𝑒𝐹

𝑚∗

𝑚∗ = ℏ2/
𝑑2𝐸

𝑑𝑘2
𝑓𝑘 =

𝑚

𝑚∗
=

𝑚

ℏ2

𝑑2𝐸

𝑑𝑘2

Solid State Physics, A J Dekker



Motion of Electrons

Effective Mass: 𝒎∗ = ℏ𝟐/
𝒅𝟐𝑬

𝒅𝒌𝟐

Solid State Physics, A J Dekker



Motion of Electrons

Effective Mass:

𝒇𝒌 =
𝒎

𝒎∗
=

𝒎

ℏ𝟐

𝒅𝟐𝑬

𝒅𝒌𝟐

Solid State Physics, A J Dekker
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Motion of Electrons

Effective Mass:

𝒎∗ = ℏ𝟐/
𝒅𝟐𝑬

𝒅𝒌𝟐

𝑚∗
𝑖𝑗  =  ℏ2

𝜕2𝐸

𝜕𝑘𝑖𝜕𝑘𝑗

−1

 (𝑖 , 𝑗 ∈ 𝑥, 𝑦, 𝑧)

Solid State Physics, A J Dekker



Motion of Electrons

Effective Mass:

Problem: The dispersion relation of electrons in a 3d lattice is given by 𝐸𝑘 = 𝛼 cos 𝑘𝑥𝑎 +
𝛽 cos 𝑘𝑦𝑎 + 𝛾 cos 𝑘𝑧𝑎, where 𝑎 is the lattice constant and 𝛼, 𝛽, 𝛾 are constants. Find the effective 

mass of tensor at the corner of the first Brillouin zone (𝜋/𝑎, 𝜋/𝑎, 𝜋/𝑎). [CU – 2016]

𝑚∗
𝑖𝑗  =  ℏ2

𝜕2𝐸

𝜕𝑘𝑖𝜕𝑘𝑗

−1

 (𝑖 , 𝑗 ∈ 𝑥, 𝑦, 𝑧)

𝑚∗
𝑥𝑥 = ቮℏ2

𝜕2𝐸

𝜕𝑘𝑥
2

−1

𝑘𝑥=𝑘𝑦=𝑘𝑧=𝜋/𝑎

= ቚℏ2 −𝛼𝑎2 cos 𝑘𝑥𝑎 −1

𝑘𝑥=𝜋/𝑎
=

ℏ2

𝛼𝑎2

𝑚∗
𝑦𝑦 = ቮℏ2

𝜕2𝐸

𝜕𝑘𝑦
2

−1

𝑘𝑥=𝑘𝑦=𝑘𝑧=𝜋/𝑎

= ฬℏ2 −𝛽𝑎2 cos 𝑘𝑦𝑎
−1

𝑘𝑥=𝜋/𝑎
=

ℏ2

𝛽𝑎2

𝑚∗
𝑧𝑧 = ቮℏ2

𝜕2𝐸

𝜕𝑘𝑧
2

−1

𝑘𝑥=𝑘𝑦=𝑘𝑧=𝜋/𝑎

= ฬℏ2 −𝛾𝑎2 cos 𝑘𝑦𝑎
−1

𝑘𝑥=𝜋/𝑎
=

ℏ2

𝛾𝑎2



Motion of Electrons

Effective Mass:

𝑚∗
𝑖𝑗  =  ℏ2

𝜕2𝐸

𝜕𝑘𝑖𝜕𝑘𝑗

−1

 (𝑖 , 𝑗 ∈ 𝑥, 𝑦, 𝑧)

𝑚∗
𝑥𝑦 = ቮℏ2

𝜕2𝐸

𝜕𝑘𝑥𝜕𝑘𝑦

−1

𝑘𝑥=𝑘𝑦=𝑘𝑧=𝜋/𝑎

= อℏ2
𝜕

𝜕𝑘𝑥

 (−𝛽𝑎 sin 𝑘𝑦𝑎)

−1

𝑘𝑥=𝑘𝑦=𝑘𝑧=𝜋/𝑎

= ∞

𝑚∗
𝑧𝑥 = 𝑚∗

𝑥𝑧 = 𝑚∗
𝑧𝑦 = 𝑚∗

𝑦𝑧 = 𝑚∗
𝑦𝑥 = ∞

𝑚∗ =
ℏ2

𝑎2

Τ1 𝛼 ∞ ∞
∞ Τ1 𝛽 ∞

∞ ∞ Τ1 𝛾

1

𝑚∗
=

𝑎2

ℏ2

𝛼 0 0
0 𝛽 0
0 0 𝛾

Or,

Similarly,



Motion of Electrons

Problem: Consider the dispersion relation of tightly bound electrons in a linear lattice with atomic 

separation 𝑎 as 𝐸 = 𝐸0 − 𝛼 − 2𝛾 cos 𝑘𝑎 (𝛼, 𝐸0, 𝛾 are constants). Obtain an expression of the 

reciprocal of effective mass (𝑚∗) as a function of 𝐸. Sketch 1/𝑚∗ as a function of 𝐸. Also, find the 

maximum velocity of the electrons. [CU – 2015]

𝐸 = 𝐸0 − 𝛼 − 2𝛾 cos 𝑘𝑎

⇒
1

𝑚∗
=

1

ℏ2

𝑑2𝐸

𝑑𝑘2
=

1

ℏ2
−2 𝛾 −𝑎 𝑎 cos 𝑘𝑎 =

2𝛾𝑎2

ℏ2
cos 𝑘𝑎 =

𝑎2

ℏ2
(𝐸0 − 𝛼 − 𝐸)

𝑣 =
1

ℏ

𝑑𝐸

𝑑𝑘
=

1

ℏ
(2𝛾𝑎 sin 𝑘𝑎) ⇒ 𝑣𝑚𝑎𝑥 =

2𝛾𝑎

ℏ

𝐸𝑚𝑎𝑥 = ቚ𝐸
𝑘=−𝜋/𝑎

= 𝐸0 − 𝛼 + 2𝛾 𝐸𝑚𝑖𝑛 = ቚ𝐸
𝑘=0

= 𝐸0 − 𝛼 − 2𝛾

Bandwidth: 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑎𝑥 = 4𝛾
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Conductor, Semiconductor & Insulator

❑ Band theory of solids leads to the possibility of distinguishing between conductors, 

semiconductors and insulators. 

❑ Consider a particular energy band to be filled up with electrons up to a certain value 𝑘1.

❑ In order to study the effect of an external electric field, we need to know how many electrons are 

equivalent to ‘free electrons’ in the band containing certain number (say, N) of electrons. 

❑ The answer to this point, presumably, leads to draw a conclusion on the conductivity associated to 

this particular energy band.    

Solid State Physics, A J Dekker
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Conductor, Semiconductor & Insulator

Solid State Physics, A J Dekker

The effective number of free electrons in the energy band 𝑁𝑒𝑓𝑓 = ∑𝑓𝑘

For a 1D lattice of length 𝐿, the number of states (excluding spin) within the interval 𝑑𝑘 is 𝐿 𝑑𝑘/2𝜋 

𝑁𝑒𝑓𝑓 = 2 ×
𝐿

2𝜋
න

−𝑘1

𝑘1

𝑓𝑘𝑑𝑘 =
𝐿

𝜋
× 2

𝑚

ℏ2
න

0

𝑘1
𝑑2𝐸

𝑑𝑘2
𝑑𝑘 =

2𝐿𝑚

𝜋ℏ2

𝑑𝐸

𝑑𝑘
𝑘1

∵ 𝑓𝑘 =
𝑚

𝑚∗
=

𝑚

ℏ2

𝑑2𝐸

𝑑𝑘2

❑ 𝑁𝑒𝑓𝑓 in a completely filled band vanishes because 𝑑𝐸/𝑑𝑘 𝑘1=𝜋/𝑎 = 0

❑ 𝑁𝑒𝑓𝑓 reaches a maximum for a band filled to the inflection point of the 𝐸 − 𝑘 curve as 𝑑𝐸/𝑑𝑘 is 

maximum at the inflection point.   
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Conductor, Semiconductor & Insulator

❑ Thus, a solid having certain energy bands completely filled and other bands completely empty, 

behaves as an insulator.

❑ On the other hand, a solid containing an incompletely filled energy band shows 

metallic/conductor character.   
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Conductor, Semiconductor & Insulator
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Concept of Hole

❑ In an intrinsic semiconductor a certain number of electrons are thermally exited from the upper 

filled band into the conduction band at temperature above 0K, leaving some of the states in the 

normally filled band vacant. These unoccupied states lie near the top of the filled band.

❑ Consider a single unoccupied state – the ‘hole’, in the filled band of a 1D lattice and consider its 

influence on the collective behaviour of this band in presence of an external electric field.

❑ In absence of external electric field, the current due to all the electrons in a completely filled band 

𝐼 = −𝑒 ෍

𝑖

Ԧ𝑣𝑖 = −𝑒 Ԧ𝑣𝑗 + ෍

𝑖≠𝑗

Ԧ𝑣𝑖 = 0

Solid State Physics, A J Dekker
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Concept of Hole

If the jth electron were missing 𝐼′ = −𝑒 ෍

𝑖≠𝑗

Ԧ𝑣𝑖 = 𝑒 Ԧ𝑣𝑗

In presence of an external electric field Ԧ𝐹, the rate of change of the current 𝐼′ is

𝑑𝐼′

𝑑𝑡
= 𝑒

𝑑 Ԧ𝑣𝑗

𝑑𝑡
= −

𝑒2 Ԧ𝐹

𝑚𝑗
∗

∵
𝑑𝑣

𝑑𝑡
=

𝑒𝐹

𝑚∗

As the vacant state (‘hole’) lies near the top of the band, the effective mass 𝑚𝑗
∗ is negative which 

makes 𝑑𝐼′/𝑑𝑡 positive. In other words, a state in which an electron is missing behaves as a 

‘positive hole’ with an effective mass 𝑚𝑗
∗ .

Solid State Physics, A J Dekker



Hall Effect

❑ The Hall effect is the production of a voltage difference (the Hall voltage 𝑉𝐻) across a conductor 

or semiconductor, transverse to an electric current (𝐽𝑥) in the conductor/semiconductor and to an 

applied magnetic field (𝐵𝑧) perpendicular to the current. 

❑ Discovered by Edwin Hall in 1879. 

❑ The Hall coefficient is defined as the ratio of the induced electric field to the product of the 

current density and the applied magnetic field. 

𝑅𝐻 =
𝐸𝑦

𝐽𝑥𝐵𝑧

❑ 𝑅𝐻 is the characteristic of the material from which the conductor/semiconductor is made, since 

its value depends on the type, number, and properties of the charge carriers that constitute the 

current.

https://en.wikipedia.org/wiki/Hall_effect

https://en.wikipedia.org/wiki/Hall_effect


Hall Effect

𝐸 = 𝐸 ො𝑥  ⇒ Ԧ𝑣 = −𝑣 ො𝑥

𝐵 = 𝐵 Ƹ𝑧, 𝑞 = −𝑒

Ԧ𝐹𝐿 = 𝑞 Ԧ𝑣 × 𝐵 = 𝑒𝑣𝐵 ො𝑥 × Ƹ𝑧 = −𝑒𝑣𝐵 ො𝑦

Ԧ𝐹𝐻 = −𝑒𝐸𝐻 = − Ԧ𝐹𝐿 = 𝑒𝑣𝐵 ො𝑦 ⇒ 𝐸𝐻 = −𝑣𝐵 ො𝑦

Ԧ𝐽 = −𝑛𝑒 Ԧ𝑣 = 𝑛𝑒𝑣 ො𝑥

𝑅𝐻 =
𝐸𝑦

𝐽𝑥𝐵𝑧
=

−𝑣𝐵

𝑛𝑒𝑣 𝐵
= −

1

𝑛𝑒

Hall Coefficient and Mobility:

𝑣 = 𝜇𝐸 𝐸𝐻 = −𝑣𝐵 = −𝜇𝐸𝐵
𝐸𝐻 = 𝜇𝐸𝐵 = 𝑅𝐻𝐽𝑥𝐵𝑧

⇒ 𝜇𝐸𝐵 = 𝑅𝐻 𝜎𝐸 𝐵

⇒ 𝜇 = 𝜎𝑅𝐻

Metals:



Hall Effect

Hall Coefficient – Experimental Determination:

𝐸𝐻 = 𝑅𝐻𝐽𝑥𝐵𝑧

𝐽𝑥 =
𝐼

𝑏𝑑
, 𝐸𝐻 =

𝑉𝐻

𝑑

𝑅𝐻 =
𝐸𝐻

𝐽𝑥𝐵𝑧
=

𝑉𝐻
𝑑

𝐵
𝐼

𝑏𝑑

=
𝑉𝐻𝑏

𝐼𝐵
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Semiconductors:
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Hall Effect

Applications:

Solid State Physics: Gupta & Islam
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