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Elementary Lattice Dynamics 

Syllabus: Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Chains. Acoustical and 

Optical Phonons. Qualitative Description of the Phonon Spectrum in Solids. Dulong and Petit's Law, 

Einstein and Debye theories of specific heat of solids. T3 law. 

1. Introduction:  

Every atom in a crystal is surrounded by other atoms by the influence of attractive force. If an atom is 

displaced from its equilibrium position, the force due to other atoms comes into act to restore its equilibrium 

position. The lattice structure can be modeled as the atoms are connected with each other by spring in three 

dimensions. A schematic structure in two and three dimensions are shown here. 

                                      

 

 

 

 

 

 

 

 

If the position of an atom is displaced by some means, it will cause displacement of neighbourhood atoms 

i.e., the vibration of an atom in the crystal is coupled vibration. The vibration in crystal may originate from 

thermal motion – the atoms vibrate in normal modes that yields thermal properties of solids like the specific 

heat, thermal conductivity. Another type of vibration in crystal is forced vibration which is caused due to 

the propagation of acoustic wave or the electromagnetic wave through the crystal that yields acoustical and 

some optical properties of solids. We will study such coupled vibration in one dimensional chain of lattice; 

we will discuss a monoatomic chain of lattice and a diatomic chain of lattice.  

Here are few assumptions necessary for the study: 

1. Motion of one atom is experienced by the nearest neighbouring atom only 

2. The motion follows Hooke’s law – that is the motion is simple harmonic 𝐹 = −𝛽𝑢 

3. Only longitudinal motion is considered. 

2. Linear Monoatomic Lattice Chain: 
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Equation of Motion: 

             𝐹𝑛 = 𝛽(𝑢𝑛+1 − 𝑢𝑛) − 𝛽(𝑢𝑛 − 𝑢𝑛−1) 

⇒ 𝑚𝑢̈𝑛 = 𝛽(𝑢𝑛+1 + 𝑢𝑛−1 − 2𝜇𝑛) … (1) 

Here one motion is resistive and the other motion is supportive. So −𝑣𝑒 sign come between two relative 

displacements. 𝐹𝑛 = −𝑣𝑒  will make it a restoring type force.  

Trial solution: 

𝑢𝑛 = 𝑢0𝑒𝑖(𝜔𝑡−𝑘𝑛𝑎) 

𝑢𝑛−1 = 𝑢0𝑒𝑖(𝜔𝑡−𝑘𝑛−1̅̅ ̅̅ ̅̅ 𝑎) =  𝑢𝑛𝑒−𝑖𝑘𝑎 

𝑢̈𝑛 = −𝜔2𝑢0𝑒𝑖(𝜔𝑡−𝑘𝑛𝑎) 

Substituting the trial solution in equation (1) 

             −𝑚𝜔2 = 𝛽(𝑒𝑖𝑘𝑎 + 𝑒−𝑖𝑘𝑎 − 2) = 𝛽 (𝑒
𝑖𝑘𝑎

2 − 𝑒−
𝑖𝑘𝑎

2 )
2

 

⇒ −𝑚𝜔2 = −4𝛽𝑠𝑖𝑛2𝑘𝑎/2 

or, 𝜔2 =
4𝛽

𝑚
sin2

𝑘𝑎

2
  ⇒ 𝜔 = ± √

4𝛽

𝑚
 sin

𝑘𝑎

2
= ±𝜔0 sin

𝑘𝑎

2
… (2) 

The longitudinal stiffness factor and linear mass density are respectively defined as 𝐶 = 𝛽𝑎 and 𝜌 = 𝑚/𝑎. 

Thus equation (2) can be rewritten as (substituting 𝛽/𝑚 = 𝑐/𝜌𝑎2) 

𝜔 = ±
2

𝑎
√

𝐶

𝜌
sin

𝑘𝑎

2
= ±

2

𝑎
𝑣𝑠 sin

𝑘𝑎

2
 

where 𝑣𝑠 = √𝐶/𝜌 is constant and has the dimension of velocity.  

 

Phase velocity:  

𝑣𝑝 =
𝜔

𝑘
=

𝜔0

𝑘
sin

𝑘𝑎

2
 

Group velocity:   

𝑣𝑔 =
𝑑𝜔

𝑑𝑘
= 𝜔0

𝑑

𝑑𝑘
sin

𝑘𝑎

2
=

𝜔0𝑎

2
 cos

𝑘𝑎

2
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Case 1: If the value of 𝑘 is small (i.e., wavelength 𝜆 is large, or frequency is small) 

lim
𝑘→0

𝑣𝑝 ≈
𝜔0

𝑘

𝑘𝑎

2
=

𝜔0𝑎

2
= lim

𝑘→0
𝑣𝑔 

Thus for 𝑘 → 0 the group velocity and the phase velocity are same which signifies that the medium will not 

act as dispersive medium for the long wavelength limit (𝜆 large, frequency small). If acoustic wave passes 

the medium then it will not be dispersive as 𝑣𝑝 = 𝑣𝑔. 

Case 2: For a larger value of 𝑘, the group velocity differs from the phase velocity (𝑣𝑝 ≠ 𝑣𝑔). The medium 

thus behaves as dispersive medium for relatively shorter wavelength. 

If 𝜔 = 𝜔0, sin
𝑘𝑎

2
= 1 ⇒ 𝑘𝑛 = ±

𝑛𝜋

𝑎
, 𝑛 = 1, 2, 3, … 

In this case we get standing wave energy will be confined in a region. Energy will not pass through medium. 

Group velocity 𝑣𝑔 = 0 here as energy is not carried out through the medium. 

3. Linear Diatomic Lattice Chain: 

 

Figure: Solid State Physics by S. P. Kuila 

Equations of motion: 

𝐹2𝑛 = 𝑚𝑢̈2𝑛 = 𝛽(𝑢2𝑛+1 − 𝑢2𝑛) − (𝑢2𝑛 − 𝑢2𝑛−1) 

                       = 𝛽(𝑢2𝑛+1 + 𝑢2𝑛−1 − 2𝑢2𝑛) … (1) 

𝐹2𝑛+1 = 𝑀𝑢̈2𝑛+1 = 𝛽(𝑢2𝑛+2 + 𝑢2𝑛 − 2𝑢2𝑛+1) … (2)                     

Trial solution: 

𝑢2𝑛 = 𝐴𝑒𝑖(𝜔𝑡−𝑘.2𝑛.𝑎) 

𝑢2𝑛+1 = 𝐵𝑒𝑖(𝜔𝑡−𝑘.2𝑛+1̅̅ ̅̅ ̅̅ ̅̅ .𝑎) 

𝑢2𝑛+2 = 𝐴𝑒𝑖(𝜔𝑡−𝑘.2𝑛+2̅̅ ̅̅ ̅̅ ̅̅ .𝑎) 

𝑢2𝑛−1 = 𝐵𝑒𝑖(𝜔𝑡−𝑘.2𝑛−1̅̅ ̅̅ ̅̅ ̅̅ .𝑎) 

Substituting the trial solutions in equations (1) and (2), we have 
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𝑚(−𝜔2𝐴) =  𝛽{𝐵(𝑒𝑖𝑘𝑎 + 𝑒−𝑖𝑘𝑎) − 2𝐴} 

or, −𝑚𝜔2𝐴 =  𝛽(2𝐵 cos 𝑘𝑎 − 2𝐴)                      

⇒  (2𝛽 − 𝑚𝜔2)𝐴 − 2𝛽 cos 𝑘𝑎 𝐵 = 0 … (3)               

and 

𝑀(−𝜔2𝐵) =  𝛽{𝐴(𝑒𝑖𝑘𝑎 + 𝑒−𝑖𝑘𝑎) − 2𝐵} 

or, −𝑀𝜔2𝐵 =  𝛽(2𝐴 cos 𝑘𝑎 − 2𝐵)                      

⇒  2𝛽 cos 𝑘𝑎 𝐴 − (2𝛽 − 𝑀𝜔2)𝐵 = 0 … (4)               

Equations (3) and (4) yield nontrivial solutions for 𝐴 and 𝐵 if 

|
2𝛽 − 𝑚𝜔2 −2𝛽 cos 𝑘𝑎

2𝛽 cos 𝑘𝑎 −2𝛽 + 𝑀𝜔2| = 0 

or, (2𝛽 − 𝑚𝜔2)(𝑀𝜔2 − 2𝛽) + (2𝛽 cos 𝑘𝑎)2 = 0                                          

or, −4𝛽2 + 2𝛽𝑀𝜔2 + 2𝛽𝑚𝜔2 + 𝑀𝑚𝜔4 + 4𝛽2 cos2 𝑘𝑎 = 0                                                     

⇒ 𝑀𝑚𝜔4 − 2𝛽(𝑀 + 𝑚)𝜔2 + 4𝛽2 sin2 𝑘𝑎 = 0                            

⇒ 𝜔4 − 2𝛽 (
1

𝑀
+

1

𝑚
) 𝜔2 +

4𝛽2

𝑀𝑚
sin2 𝑘𝑎 = 0 … (5)          

∴ 𝜔2 =
1

2
[2𝛽 (

1

𝑀
+

1

𝑚
) ± √4𝛽2 (

1

𝑀
+

1

𝑚
)

2

−
16𝛽2

𝑀𝑚
sin2 𝑘𝑎] 

      = 𝛽 [(
1

𝑀
+

1

𝑚
) ± √(

1

𝑀
+

1

𝑚
)

2

−
4

𝑀𝑚
sin2 𝑘𝑎] … (6) 

Equation (5) yields two roots (two frequency relations between 𝜔 and 𝑘 – the dispersion relations) as in 

equation (6): 

𝜔+
2 = 𝛽 [(

1

𝑀
+

1

𝑚
) + √(

1

𝑀
+

1

𝑚
)

2

−
4

𝑀𝑚
sin2 𝑘𝑎] … (7) 

𝜔−
2 = 𝛽 [(

1

𝑀
+

1

𝑚
) − √(

1

𝑀
+

1

𝑚
)

2

−
4

𝑀𝑚
sin2 𝑘𝑎] … (8) 

𝜔+ corresponds to optical mode of vibration while 𝜔− corresponds to the acoustic mode of vibration (as 

the optical frequency is very large corresponds to acoustic frequency  𝜔+ ≫ 𝜔−).   

Case 1: Let us now consider a special case 𝑘𝑎 → 0, sin 𝑘𝑎 ≈ 0 – at the center of the Brillouin zone. 

(a) Optical Branch: In this case (𝑘𝑎 → 0, sin 𝑘𝑎 ≈ 0) equation (7) yields 

𝜔+ = √2𝛽 (
1

𝑀
+

1

𝑚
) 
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(b) Acoustic Branch: In this case (𝑘𝑎 → 0, sin 𝑘𝑎 ≈ 𝑘𝑎) equation (8) yields 

𝜔−
2 = 𝛽 [(

1

𝑀
+

1

𝑚
) − √(

1

𝑀
+

1

𝑚
)

2

−
4𝑘2𝑎2

𝑀𝑚
] 

                    = 𝛽 [
1

𝜇
− √

1

𝜇2
−

4𝑘2𝑎2

𝑀𝑚
]   where (

1

𝑀
+

1

𝑚
=

1

𝜇
) 

                            =
𝛽

𝜇
[1 − √1 −

4𝜇2𝑘2𝑎2

𝑀𝑚
] ≈

𝛽

𝜇
[1 − (1 −

2𝜇2𝑘2𝑎2

𝑀𝑚
)] 

                                                                     =
2𝛽𝜇𝑘2𝑎2

𝑀𝑚
=

2𝛽𝑘2𝑎2

𝑀 + 𝑚
 

∴ 𝜔_ = √ 
2𝛽

𝑀 + 𝑚
𝑘𝑎 

If 𝑘 = 0 (at the center of Brillouin Zone) then the acoustic mode will disappear, optical mode will remain. 

Case 2: Let 𝑘𝑎 → 𝜋/2, sin 𝑘𝑎 ≈ 1 – at the boundary of the Brillouin Zone 

(a) Optical Branch: In this case (𝑘𝑎 → 𝜋/2, sin 𝑘𝑎 ≈ 1) equation (7) yields 

𝜔+
2 = 𝛽 [(

1

𝑀
+

1

𝑚
) + √(

1

𝑀
+

1

𝑚
)

2

−
4

𝑚𝑀
] 

         = 𝛽 [(
1

𝑀
+

1

𝑚
) + (−

1

𝑀
+

1

𝑚
)] = 𝛽 (

2

𝑚
) 

⇒ 𝜔+ = √
2𝛽

𝑚
 

 (b) Acoustic Branch: In this case (𝑘𝑎 → 𝜋/2, sin 𝑘𝑎 ≈ 1) equation (8) yields 

𝜔−
2 = 𝛽 [(

1

𝑀
+

1

𝑚
) − √(

1

𝑀
+

1

𝑚
)

2

−
4

𝑚𝑀
] 

         = 𝛽 [(
1

𝑀
+

1

𝑚
) − (−

1

𝑀
+

1

𝑚
)] = 𝛽 (

2

𝑀
) 

⇒ 𝜔− = √
2𝛽

𝑀
 

Relative amplitudes and phases for optical and acoustic mode of vibration:  

Let, 𝑘 → 0, cos 𝑘𝑎 → 1.  
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𝜔+ = √2𝛽 (
1

𝑀
+

1

𝑚
) ,   𝜔_ = √ 

2𝛽

𝑀 + 𝑚
𝑘𝑎 

For 𝜔 = 𝜔+, we have from equation (3) 

(2𝛽 − 𝑚𝜔+
2 )𝐴 − 2𝛽 cos 𝑘𝑎 𝐵 = 0 

⇒ [2𝛽 − 𝑚2𝛽 (
1

𝑀
+

1

𝑚
)] 𝐴 − 2𝛽. 𝐵 = 0 

⇒ −
2𝑚

𝑀
𝛽𝐴 = 2𝛽. 𝐵 ⇒

𝐴

𝐵
= −

𝑀

𝑚
 

Thus the atoms move out of phase in optical mode of vibration.  

For 𝜔 = 𝜔−, we have from equation (3) 

(2𝛽 − 𝑚𝜔+
2 )𝐴 − 2𝛽 cos 𝑘𝑎 𝐵 = 0 

⇒ [2𝛽 − 𝑚
2𝛽

𝑀 + 𝑚
𝑘2𝑎2] 𝐴 − 2𝛽. 𝐵 = 0 

⇒ 𝐴 = 𝐵 

In acoustic mode of vibration, both atoms vibrate with same amplitude and in same phase.  

 

 

Figure: Solid State Physics by S. P. Kuila  
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Specific heat of solids 

The specific heat of solids is defined as 𝐶𝑣 = 𝑑𝑈/𝑑𝑇 where U is the energy of the system.  

A. Dulong–Petit Law: 

Specific heats of all solids are same and that is 6cal/mol/℃ 

This law is based on the classical explanation and the law of equipartition energy. It assumes the atoms in 

a crystal as 3 dimensional harmonic oscillators. By the theorem of equipartition of energy, the average 

kinetic energy of 3D oscillators is 3𝐾𝑇/2. Therefore, the total average energy of an oscillator is 3𝐾𝑇. 

(average potential energy of a harmonic oscillator is same as the average kinetic energy). 

Therefore, the molar energy 

𝑈 = 3𝑁𝐴𝐾𝑇 = 3𝑅𝑇  

                ⇒ 𝐶𝑉 =
𝑑𝑈

𝑑𝑇
= 3𝑅 = 6 cal/mol/℃ 

This is the same for all solids and independent of temperature. In practice, the observation is different. 

Dulong–Petit law is consistent at higher temperatures only. 

Limitations: 

(i) Dulong–Petit law is consistent with experimental observation at room temperature or above. At lower 

temperature 𝐶𝑣 varies with 𝑇. 

(ii) 𝐶𝑣 below the room temperature depends on the material. 
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B. Einstein Model: 

Phonons: Quantum of the vibrational energy. Energy of phonon 𝐸𝑛 = 𝑛ℎ𝜈 = 𝑛ℏ𝜔 

It follows the similar property as photon does.  

Momentum 𝑝 = ℎ𝜈/𝑐 = ℏ𝜔/𝑐 where 𝑐 is the speed of the acoustic wave. 

No of states between 𝜔 and 𝜔 + 𝑑𝜔: 

                       𝑁(𝜔)𝑑𝜔 =
4𝜋𝑉

ℎ3

(ℏ𝜔)2

𝑐2

ℏ

𝑐
𝑑𝜔 

                                                                  =
4𝜋𝑉

8𝜋3𝑐3
𝜔2𝑑𝜔 =

𝑉

2𝜋2𝑐3
𝜔2𝑑𝜔 

No of states between 𝜈 and 𝜈 + 𝑑𝜈: 

                   𝑁(𝜈)𝑑𝜈 =
4𝜋𝑉

ℎ3

(ℎ𝜈)2

𝑐2

ℎ

𝑐
𝑑𝜈 

                              =
4𝜋𝑉

𝑐3
𝜈2𝑑𝜈 

In Einstein model, the energy is calculated in the semi-classical approach as follows. It uses the MB 

statistics and phonon hypothesis. 

𝑁𝑛 = 𝑁0𝑒−𝜀𝑛/𝑘𝑇 = 𝑁0𝑒−𝑛ℎ𝜈/𝑘𝑇 

𝜖̅ =  
∑ 𝜖𝑛𝑁𝑛

∞
𝑛=𝑜

∑ 𝑁𝑛
∞
𝑛=𝑜

=  
∑ 𝑛ℎ𝜈∞

𝑛=𝑜 𝑒−𝑛ℎ𝜈/𝑘𝑇

∑ 𝑒−𝑛ℎ𝜈/𝑘𝑇∞
𝑛=𝑜

=
ℎ𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1
 

Molar energy 

𝑈 = 𝑁𝐴𝜖̅ = 𝑁𝐴

ℎ𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1
 

∴ 𝐶𝑉 =
𝑑𝑈

𝑑𝑇
=

ℎ𝜈𝑁𝐴(−1)𝑒ℎ𝜈/𝐾𝑇

(𝑒ℎ𝜈/𝐾𝑇 − 1)2

ℎ𝜈

𝐾
 (−

1

𝑇2
) 

This is for one dimensional oscillator. 

For a 3D oscillator 

𝐶𝑣 = 3
𝑑𝑈

𝑑𝑇
= 3𝑁𝐴𝐾 (

ℎ𝜈

𝐾𝑇
)

2 𝑒ℎ𝜈/𝐾𝑇

(𝑒ℎ𝜈/𝐾𝑇 − 1)2
 

𝑘𝜈/𝐾 dimensionally represents a temperature, say 𝜃𝐸 . the Einstein temperature. 

∴ 𝐶𝑣 = 3𝑅(𝜃𝐸/𝑇)2
𝑒𝜃𝐸/𝑇

(𝑒𝜃𝐸/𝑇 − 1)2
 

Note that, if quantum mechanical expression of the energy were taken  𝜖𝑛 = (𝑛 + 1/2)ℎ𝜈, the average 

energy would be 

𝜖̅ =
ℎ𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1
+

ℎ𝜈

2
 

However, the zero point energy (ℎ𝜈/2) would not contribute to the specific heat as it is independent of 

temperature. 
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High temperature limit: 

Let the temperature is large and hence ℎ𝜈/𝐾𝑇 is small.  

∴ 𝑒ℎ𝜈/𝐾𝑇 ≈ 1 +
ℎ𝜈

𝐾𝑇
 

⇒ 𝜖̅ =
ℎ𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1
= 𝐾𝑇 

⇒ 𝑈 =  3𝑁𝐴𝜖̅ = 3𝑁𝐴𝐾𝑇 = 3𝑅𝑇 

∴ 𝐶𝑣 =  
𝜕𝑈

𝜕𝑇
= 3𝑅 

Low temperature limit: 

At the low temperature, ℎ𝜈/𝐾𝑇 is large and hence 𝑒ℎ𝜈/𝐾𝑇 ≫ 1. 

∴ 𝜖̅ =
ℎ𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1
≈ ℎ𝜈 𝑒−ℎ𝜈/𝐾𝑇 

⇒ 𝑈 =  3𝑁𝐴𝜖̅ = 3𝑁𝐴ℎ𝜈 𝑒−ℎ𝜈/𝐾𝑇 

∴ 𝐶𝑉 =
𝑑𝑈

𝑑𝑇
= 3𝑁𝐴ℎ𝜈𝑒−ℎ𝜈/𝐾𝑇 (−

ℎ𝜈

𝐾
) (−

1

𝑇2
) 

                 = 3𝑁𝐴𝐾 (
ℎ𝜈

𝐾𝑇
)

2

𝑒−ℎ𝜈/𝐾𝑇 

          = 3𝑅 (
𝜃𝐸

𝑇
)

2

𝑒−𝜃𝐸/𝑇 

Experimental Evidences 

(i) The specific heat of solid at very low temperature follows a 𝑇3 law that is 𝐶𝑉 ∝ 𝑇3 at low temperature. 

C. Debye’s Theory: 

Debye assumed that the vibration of solid should be consider as a whole, rather than the vibration of a single 

atom (as Einstein did) because the atoms in the solid form a coupled system. 

Since the vibration of a solid as a whole is considered, corresponding to every longitudinal mode there will 

be two transverse modes of vibration. Thus the number of modes corresponding to the frequency between 

𝜈 and 𝜈 + 𝑑𝜈 is 

𝑍(𝜈)𝑑𝜈 =
4𝜋𝑉

𝑐3
𝜈2𝑑𝜈 

Let longitudinal wave speed is 𝑐𝑙 while the transverse wave speed is 𝑐𝑡. Thus total number of modes 

considering one longitudinal and two transverse modes of vibration between the frequency range 𝜈 and 𝜈 +
𝑑𝜈 is  

𝑍(𝜈)𝑑𝜈 = 4𝜋𝑉 (
1

𝑐𝑙
3 +

2

𝑐𝑡
3) 𝜈2𝑑𝜈 … (1) 

Debye pointed out that the maximum frequency must be restricted due to the fact that total number of modes 

of vibration must be 3𝑁𝐴 (𝑁𝐴 is the Avogadro number) i.e. there is a cut off frequency called the Debye 

frequency 𝜈𝐷. 
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∫ Z(𝜈)𝑑𝜈 = 3𝑁𝐴

𝜈𝐷

0

 

⇒ 4𝜋𝑉 (
1

𝑐𝑙
3

+
2

𝑐𝑡
3

) ∫ 𝜈2
𝜈𝐷

0

𝑑𝜈 = 3𝑁𝐴 

⇒
4𝜋𝑉

3
(

1

𝑐𝑙
3

+
2

𝑐𝑡
3

) 𝜈𝐷
3 = 3𝑁𝐴 

or, 𝜈𝐷
3 =

9𝑁𝐴

4𝜋𝑉
(

1

𝑐𝑙
3

+
2

𝑐𝑡
3

)
−1

… (2) 

Equation (2) represents the expression for the Debye cut off frequency 𝜈𝐷. 

Debye took the expression for average energy as calculated by Einstein, i.e. 

𝜖̅ =
ℎ𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1
 

Thus, the total energy  

𝑈 = ∫ Z(𝜈)𝜖𝑑̅𝜈
𝜈𝐷

0

 

                                                  = 4𝜋𝑉 (
1

𝑐𝑙
3

+
2

𝑐𝑡
3

) ∫
ℎ𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1
𝜈2

𝜈𝐷

0

𝑑𝜈 

                             =
9𝑁𝐴ℎ

𝜈𝐷
3 ∫

𝜈3𝑑𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1

𝜈𝐷

0

 … (3) 

Specific heat: 

𝐶𝑉 =
𝑑𝑈

𝑑𝑇
=

9𝑁𝐴ℎ

𝜈𝐷
3 ∫

𝜈3𝑑𝜈(−1)𝑒ℎ𝜈/𝐾𝑇

(𝑒ℎ𝜈/𝐾𝑇 − 1)2

ℎ𝜈

𝐾
(−

1

𝑇2
)

𝜈𝐷

0

 

               =
9𝑁𝐴ℎ

𝜈𝐷
3 ∫ (

ℎ

𝐾𝑇2
)

𝑒ℎ𝜈/𝐾𝑇𝜈4

(𝑒ℎ𝜈/𝐾𝑇 − 1)2
𝑑𝜈

𝜈𝐷

0

 … (4) 

Let ℎ𝜈/𝐾𝑇 = 𝑥, Note that ℎ𝜈/𝐾 dimensionally represents a temperature. For 𝜈 = 𝜈𝐷, let ℎ𝜈𝐷/𝐾 = 𝜃𝐷 – 

the Debye temperature. Thus 𝑥 = 𝑥𝑚 = ℎ𝜈𝐷/𝐾𝑇 = 𝜃𝐷/𝑇. Substituting in equation (4), we have                       

𝐶𝑉 =
9𝑁𝐴ℎ

𝜈𝐷
3 ∫ (

ℎ

𝐾𝑇2
)

𝑒𝑥𝑥4

(𝑒𝑥 − 1)2

𝑥𝑚

0

(
𝐾𝑇

ℎ
)

4

(
𝐾𝑇

ℎ
) 𝑑𝑥 

=
9𝑁𝐴ℎ

𝜈𝐷
3 ∫ (

𝐾4𝑇3

ℎ4 )

𝑥𝑚

0

𝑒𝑥𝑥4

(𝑒𝑥 − 1)2
𝑑𝑥 

= 9𝑁𝐴𝐾 (
𝐾𝑇

ℎ𝜈𝐷
)

3

∫
𝑒𝑥

(𝑒𝑥 − 1)2
𝑥4𝑑𝑥

𝑥𝑚

0
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= 3𝑅 (
3

𝑥𝑚
3 ) ∫

𝑒𝑥

(𝑒𝑥 − 1)2
𝑥4𝑑𝑥

𝑥𝑚

0

= 3𝑅𝐷(𝑥) … (5) 

where, 𝐷(𝑥) is called the Debye function and is defined as 

𝐷(𝑥) = (
3

𝑥𝑚
3 ) ∫

𝑒𝑥

(𝑒𝑥 − 1)2
𝑥4𝑑𝑥

𝑥𝑚

0

 … (6) 

For large temperature 𝐶𝑉 ≈ 3𝑅, and thus from equation (5) it is clear that the limiting value of the Debye 

function in this case is 1 i.e. 𝐷(𝑥 → 0) ≈ 1. 

High temperature limit: T→ large, 𝑥 = ℎ𝜈/𝐾𝑇 →small. 

𝑒𝑥 ≈ 1 + 𝑥 ⇒ 𝑒𝑥 − 1 ≈ 𝑥 

From equation (5) 

𝐷(𝑥) = (
3

𝑥𝑚
3 ) ∫

1

𝑥2
𝑥4𝑑𝑥

𝑥𝑚

0

= 1 

∴ From equation (4), 𝐶𝑉 = 3𝑅. 

Alternative approach: For higher temperature, ℎ𝜈/𝐾𝑇 is small and hence  

𝑒ℎ𝜈/𝐾𝑇 ≈ 1 +
ℎ𝜈

𝐾𝑇
 

Thus from equation (3) 

𝑈 =
9𝑁𝐴ℎ

𝜈𝐷
3 ∫

𝜈3𝑑𝜈

𝑒ℎ𝜈/𝐾𝑇 − 1

𝜈𝐷

0

≈
9𝑁𝐴ℎ

𝜈𝐷
3 ∫

𝜈3𝑑𝜈

(ℎ𝜈/𝐾𝑇)

𝜈𝐷

0

 

                                                          =
9𝑁𝐴

𝜈𝐷
3 𝐾𝑇 ∫ 𝜈2𝑑𝜈

𝜈𝐷

0

= 3𝑅𝑇 

∴ 𝐶𝑉 =
𝑑𝑈

𝑑𝑇
= 3𝑅 

Low temperature limit: 

Recall 𝑥 = ℎ𝜈/𝐾𝑇, 𝑥𝑚 = ℎ𝜈𝐷/𝐾𝑇. For low temperature, 𝑥𝑚 → ∞. From equation (3), we have 

𝑈 =
9𝑁𝐴ℎ

𝜈𝐷
3 ∫

𝜈3𝑑𝜈

𝑒
ℎ𝜈
𝐾𝑇 − 1

𝜈𝐷

0

=
9𝑁𝐴ℎ

𝜈𝐷
3 ∫ (

𝐾𝑇

ℎ
)

4 𝑥3𝑑𝑥

𝑒𝑥 − 1

𝑥𝑚

0

                                     

                                                 =
9𝑁𝐴ℎ

𝜈𝐷
3 (

𝐾𝑇

ℎ
)

4

∫
𝑥3𝑑𝑥

𝑒𝑥 − 1

∞

0

=
9𝑁𝐴ℎ

𝜈𝐷
3 (

𝐾𝑇

ℎ
)

4

(
𝜋4

15
)  

∴ 𝐶𝑉 =
𝑑𝑈

𝑑𝑇
=

9𝑁𝐴ℎ

𝜈𝐷
3 (

𝐾

ℎ
)

4

(
𝜋4

15
)  4𝑇3 

∴ 𝐶𝑣 ∝ 𝑇3 → at very low temperature as observed experimentally. 
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This is the famous Debye’s 𝑇3 law and it agrees well with the experimental result at low temperature. 

However, as T→0 K this law fails. In that region 𝐶𝑉 is found to vary linearly with 𝑇 i.e. 𝐶𝑣 ∝ 𝑇 as 𝑇 → 0. 

This is not due to the lattice vibration. It is the electronic contribution of specific heat at very low 

temperature. At low temperature 𝐶𝑉 = 𝐴𝑇 + 𝐵𝑇3. 

Difference between the Einstein and the Debye Models: 

Limitations of the Debye model 

1. Debye assumed continuum model of solid which is approximately true only for long wavelength 

vibrational modes. This assumption does not hold for short wavelength. 

2. Debye assumed that the frequency of various modes of vibration is independent of temperature of solid 

which is also not true. 

3. It is assumed that 𝑐𝑙 and 𝑐𝑡 are independent of frequency of vibration that means we assumed a non-

dispersive medium which is not true in general. 

4. Debye assumed that the total number of modes of vibration should be restricted to 3𝑁𝐴. However, there 

is no justification behind this assumption in a continuum model. 

5. Debye did not consider the interaction between the atoms and the contribution of electrons to this specific 

heat. 

 


