University of Calcutta Questions on Rearrangement Reactions in Organic Chemistry

1. Predict the major product with plausible mechanism: (3) [Baeyer-Villiger]

[Variant: Predict the product and explain with mechanism: (3)

2. Predict the product of the following reaction with mechanism: (2) [Benzidine]

3. Write down the products when a mixture of phenyl acetate and α -naphthyl propanoate is heated with anhydrous AlCl₃. Explain. (3) [Fries]

[Variant: Predict the products with mechanism: (3)

4. Write the structures of all possible products when a 1:1 mixture of [A] and [B] is heated together. Explain their formation. [3] [Claisen]

5. Predict the product of the following reaction with mechanism: (2) [Dienone-phenol]

6. Predict the major product of the following reactions with plausible mechanism: (3) [Semipinacol, and Schmidt]

1

[Variant-1, of 6) i) Predict the product with plausible mechanism: (3)

Variant-2, Same question, with

- 7. Provide the reagent and condition for the following sequence of reaction (mechanism not necessary).
- (2) [Baeyer-Villiger and Fries]

8. Both Ph₂C(OH)C(OH)Me₂ and Ph(Me)C(OH)C(OH)(Me)Ph afford the same ketone when treated with 70% H₂SO₄. Explain with mechanism. (3) [Pinacol-pinacolone]

[Variant: Elaborate with suitable reaction mechanism the major and the minor products obtained from the pinacol (CH₃)₂C(OH)-C(OH)Ph₂ on treatment with conc. H₂SO₄. Give proper evidence in favour of your answer. (4)]

9. Predict the products of the following reaction and explain their formation. (2) [Hofmann]

10. Identify the products in each case, with proper mechanism. (3) [Orton, Dienone-phenol]

[Variant: Identify the product(s) with proper mechanism. (2) [Orton]

11. Predict the major product of the following reaction with plausible mechanism: (2) [Benzil-benzilic acid rearrangement]

$$H_3CO$$
 HO^{\bigcirc}, Δ

12. Predict the products of the following reactions with plausible mechanism. (3) [Claisen, Dakin]

[Variant of 12. ii): What happens when vanillin is treated with alkaline hydrogen peroxide? Give mechanism. (1.5) [Dakin]]

13. Explain the formation of the product in the following reaction with plausible mechanism. (2) [Baeyer-Villiger]

MeO
$$MO_2$$
 $MCPBA, CH_2CI_2, \Delta$

Variant-1: Same question, different structure. (3 each)

14. Explain the following reaction: [Nitramine, out-of-syllabus]

$$O_2N$$
 NO_2
 $PhNMe_2$, heat
 O_2N
 NO_2
 NH_2

Why does [A] not form? (3)

$$[A] = O_2N - NMe_2$$

15. Write the product obtained in the following reaction, with correct stereochemistry, and give the mechanism. (2) [Curtius]

16. Predict the major products of the following reaction and explain with plausible mechanism. (3) [Benzidine]

[Variant: Benzidine rearrangement is intramolecular in nature. Justify the statement. (2)]

17. Complete the reaction indicating the stereochemistry of the product. (2) [Beckmann]

[Variant: Same question, but with a different migrating group:

i) Ph
$$\stackrel{\text{i) PCl}_5}{\text{N}_{OH}}$$
 $\stackrel{\text{ii) PCl}_5}{\text{ii) H}_2O^{18}}$ $\stackrel{\text{ii)}}{\text{N}_{OH}}$ $\stackrel{\text{ii) PCl}_5}{\text{ii) H}_2O^{18}}$

- 18. What happens when an acid chloride is treated with an excess of diazomethane and the product reacts with ethanol in the presence of Ag_2O catalyst? (3) [Arndt-Eistert]
- 19. predict the major product of the following reaction and explain its formation mechanistically. (2) [Pinacol-pinacolone]

20. Which member of the following pair will undergo dienone-phenol rearrangement more rapidly and why? (3) [Dienone-phenol]

4

21. Predict the product and give mechanism of the following reaction. (2) [Benzil-benzilic acid]

- 22. Fries rearrangement is both intermolecular as well as intramolecular. Give supporting evidence in favour of this statement. (3) [Fries]
- 23. Predict the product and give plausible mechanism. (2) [Lossen]

24. How would you carry out the following transformation? (2) [Pinacol-pinacolone and Baeyer-Villiger]

[Variant: Propose a synthesis of tert-butyl acetate from 2,3-dimethylbutane-2,3-diol. (2)]

25. How will you prepare phenol from benzene via cumene? Give the mechanism of the reactions involved. (3) [Cumeme-phenol]

[Variant-1: Suggest the reagents and propose the mechanism of the key step for the following transformation. (2)

Variant-2: How will you prepare phenol and acetone commercially in a single chemical process?]

26. Write the product of the following reaction. (1.5) [Claisen]

27. Predict the product and explain the mechanism involved. (2) [Benzidine]

[Variant: Same substrate, reagent is H⁺, marks allotted 1.5]

28. Predict the product of the following reaction with plausible mechanism: (2) [Dakin]

$$\begin{array}{c} \text{CHO} \\ \text{OH} \end{array} \begin{array}{c} \text{i) H_2O_2, NaOH} \\ \text{ii) H_3O} \end{array}$$

5

[Variant: Carry out the following conversion: (2)

- 29. What happens when diazoaminobenzene is treated with dil. HCl? Explain mechanistically. (2) [C-azo to N-azo]
- 30. Predict the products of the following reaction with mechanism. (1.5) [Dienone-phenol]

[Variant: Give the product(s) of the following reaction with plausible mechanism, (2)

31. Identify the product of the following reaction with mechanism: (3) [Claisen]

32. Predict the product and suggest mechanism. (2) [Bamberger]

[Variant: same question, only 1 mark allotted; also, reaction arrow is reversible.]

- 33. What happens when $PhCH_2COCl$ is treated with CH_2N_2 and the resultant product is allowed to react with Ag_2O in water? Give the mechanism of the second step. (3) [Arndt-Eistert]
- 34. Predict the mechanism of the following reaction and give mechanism. (2) [Beckmann]

$$\begin{array}{ccc}
& OH \\
& N \\
& N \\
& i) PCI_5 \\
& ii) H_2O
\end{array}$$

- 35. RCONHMe does not undergo Hofmann amine formation reaction. Offer an explanation. (2) [Hofmann]
- 36. Provide the product(s) of the following reaction along with plausible mechanisms. [Fries]

How do you justify the formation of different products with the change in reaction temperature? (3) [Variant: Predict the product and explain. (2)

37. Suggest structures of A, B and C. Also suggest a mechanism of conversion from B to C. (3) [Semipinacol]

- 38. Benzaldehyde fails to undergo Dakin's reaction. Account for this observation. (2) [Dakin]
- 39. Suggest structures for (A) and (B) and give mechanism for their formation: (3) [Semipinacol]

40. Predict the product with mechanism: (2 each) [Hofmann, Baeyer-Villiger]

41. Carry out the following transformation: (2) [Pinacol-pinacolone]

42. Using the retrosynthetic approach, outline an efficient synthesis of the following compound involving the pinacol-pinacolone rearrangement as one of the steps: (3) [Pinacol-pinacolone]

[Variant: Work backwards to identify the starting material which on pinacol-pinacolone rearrangement would provide: (3)

43. Identify (A) and (B) in the following sequence and explain why 2 equivalents of diazomethane are required for the first step of the sequence. (2) [Arndt-Eistert]

PhCH₂COCI
$$\xrightarrow{\text{CH}_2\text{N}_2 \text{ (2 moles)}}$$
 (A) $\xrightarrow{\text{R}_2\text{NH}}$ (B)

7

44. Predict the products and offer explanation. (2 each) [Claisen, semipinacol, last two both Dakin]

45. Mechanistically account for the following transformation. (2) [Beckmann-related]

$$HO-N$$
 $GONH_2$
 $GONH_2$
 $GONH_2$
 $GONH_2$
 $GONH_2$
 $GONH_2$
 $GONH_2$
 $GONH_2$

- 46. In Arndt-Eistert synthesis, two equivalents of diazomethane is used. Why? What happens if only one equivalent is used? (2+1) [Arnst-Eistert]
- 47. An organic compound (A) [C₈H₉ON] on treatment with H₂SO₄ isomerizes to (B) which on hydrolysis furnishes aniline and acetic acid. What are (A) and (B)? Explain the above facts and show mechanism for the isomerization step only. (3) [Beckmann]
- 48. Carry out the following conversions: (2 each) [Hofmann, Fries]

i)
$$CH_3$$
 $COCH_3$ $COCH_3$ $COCH_3$ $COCH_3$ $COCH_3$ $COCH_3$

49. Identify (A) and (B). Provide mechanism. (3) [Curtius]

50. Predict the product and explain. (3) [Fries]

OCOCH₃

i) 4 eqv. AlCl₃,
$$\Delta$$

ii) HCl, H₂O

51. Predict the product and explain with mechanism. (3) [Hofmann]

$$H \longrightarrow CONH_2$$
 $HO \longrightarrow Br_2, HO \longrightarrow Br_2$

53. Predict the product and explain with mechanism. (3) [Arndt-Eistert]

54. Convert [A] to [B] and vice versa. (4) [Arndt-Eistert]

- 55. What happens when p-methylphenyl acetate is heated with anhydrous AlCl₃? Give the mechanism of the reaction. (2) [Fries]
- 56. Predict the product and explain with mechanism. (2) [Hofmann]

$$Me \xrightarrow{Ar} O \xrightarrow{Br_2, KOH}$$

57. Identify [A] and [B]. Show the mechanism of conversion from [A] to [B], (3) [Lossen]

58. Predict the product and explain with mechanism. (3 each) [Claisen]

ii)
$$A$$
 ii) A A iii) A A A iii) A A

59. Predict the product and explain with mechanism. (2) [Wagner-Meerwein]

- 60. Lossen and Curtius rearrangements are mechanistically similar. Justify. (3) [Lossen and Curtius]
- 61. Predict the product and explain with mechanism. (2) [Pinacol-pinacolone]

62. Predict the product and explain with mechanism. (3) [Claisen]

63. Predict the product and explain with mechanism. (3+2) [Beckmann]

i)
$$O_2N$$
 O_2N O_2N O_2N O_2N O_2N O_3N O_4 O_5N O_5N

64. Predict the products in each case and indicate the features common to both the reactions: (3+3) [Hofmann, Curtius, Arndt-Eistert (Wolff), Beckmann, Curtius]

i)
$$(R)$$
-C₂H₅CH(CH₃)CONH₂ ii) NaN₃ ii) CHCl₃ iii) EtOH, Δ
iii) (S) -C₆H₅CH(CH₃)COCI ii) NaN₃ ii) CHCl₃ heat

iii) (R) -EtCPh(Me)COCHN₂ ii) PCl₅
(S) II ii) H₂O

v) (R) -EtCH(CH₃)COCI i) NaN₃ iii) CHCl₃ heat

65. Predict the product and explain with mechanism. (2) [Curtius]

66. How to carry out the following conversion: [Dienone-phenol, pinacol-pinacolone-type, Fries combined with Beckmann]

[For 66. i), Variant-1; Convert p-cresol to 1,4-dihydroxymethylbenzene, (3)

Variant-2: Predict the product with mechanism. (2)

67. Predict the product and explain with mechanism. (2 each) [Pinacol-pinacolone]

68. In the reaction shown below with 1-bromo-2-phenylethane, having C-1 labelled with radioisotope (¹⁴C), one half of the radioactivity was found to be located at each of C-1 and C-2 in the product. Show how this scrambling takes place. Also suggest how the amount of the ¹⁴C label on C-1 and on C-2 in the product can be determined. (3+1) [Wagner-Meerwein]

PhCH₂CH₂Br
$$\xrightarrow{AlBr_3, -70 \text{ °C}}$$
 PhCH₂CH₂Br $(50\%)(50\%)$ [* = ¹⁴C]

69. Identify and explain: (4) [Baeyer-Villiger, pinacol-pinacolone, Darzen's glycedic ester condensation followed by pinacol-pinacolone-type]

$$\begin{array}{c|c} C_{6}H_{5}COCH_{3} & \xrightarrow{CICH_{2}CO_{2}Et, \ NaNH_{2}} & [C] & \xrightarrow{i) \ HO^{\ }, \ heat} \\ \hline PhCO_{3}H & \xrightarrow{i) \ Mg-Hg \ or \ Mg, \ MgI_{2}} & [B] & \\ \hline [A] & ii) \ dil. \ H_{2}SO_{4}, \ heat & [B] \\ \end{array}$$

70. Predict the product(s) and explain. (4) [Hofmann]

71. Complete and explain. (2+2) [Pinacol-pinacolone]

i) Isobutene
$$\frac{RCO_3H}{CH_2Cl_2}$$
? $\frac{BF_3, \text{ ether}}{?}$?

- 72. Show how Hofmann, Curtius, Lossen and Schmidt reactions proceed through a common intermediate. Give proper evidence in favour of your answer. [Hofmann, Curtius, Lossen, Schmidt]
- 75. Predict product with mechanism: (2) [Lossen]

78. Which compound, in each of the following pairs will undergo he indicated rearrangement more readily? Justify with mechanism and give the product in each case. (4 each) [Beckmann, Schmidt, pinacol-pinacolone]

i) MeO
$$\stackrel{N-OH}{\longrightarrow}$$
 or MeO $\stackrel{N}{\longrightarrow}$ (Beckmann rearrangement) $\stackrel{Me}{\longrightarrow}$ (Schmidt rearrangement) $\stackrel{HO}{\longrightarrow}$ (Schmidt rearrangement) $\stackrel{HO}{\longrightarrow}$ (Schmidt rearrangement) $\stackrel{HO}{\longrightarrow}$ (Schmidt rearrangement) $\stackrel{HO}{\longrightarrow}$ (Schmidt rearrangement)

- 79. What happens when *N*-methylphthalimide reacts with bromine in aqueous NaOH at 0-5 °C. Would *N*-methylphthalimide react analogously? Give reasons for your answer. (4) [Hofmann]
- 80. The benzil-benzilic acid rearrangement and the Cannizzaro reaction are both base-catalysed reactions, give mechanism for both and point out similarities, if any. (2) [Benzil-benzilic acid.]
- 81. Give the product(s) of the following reaction: (1) [Claisen]

- 82. Write down the structures of the products when RCOOH and R₂C=O are separately subjected to the Schmidt reaction. (1)
- 83. Give the structures of A-D in the following scheme. Suggest mechanism for the conversion of B to C and D. [Cumeme-phenol] (3)

84. The following reaction gives a single product. Give the structure of that product and explain mechanistically why the isomeric product does not form. (3) [Pinacol-pinacolone]

85. Explain the formation of A and B mechanistically. (3) [Pinacol-pinacolone]