Organic Chemistry-4

Semester-4, CBCS

Course: CEMA CC-4-8-TH

Course taught by: Kaushik Basu, Department of Chemistry, SPCMC, Kolkata

email: chiralkaushik@gmail.com

Recommended texts:

1. Study Guide to Organic Chemistry, Volume 2, by Saha, Chakraborty, Saha & Basu, Techno World, ISBN 9788192669588, 2. Organic Chemistry, Second Ed. by Clayden, Greeves & Warren, OUP, ISBN 9780198728719

E] 1,6-bifunctional compounds:

The following is a summary of the retrosynthetic strategies one can adopt when the target molecule contains two heteroatom-based functional groups placed at an 1,6-relation. These target molecules are dissonant systems, so umpolung strategy will be involved.

Let us consider a few generalised disconnection strategies:

1.
$$R_{2} \xrightarrow{\text{1,6-diCO}} R_{2} \xrightarrow{\text{1,6-diCO}} R_{$$

2.
$$R_1 \xrightarrow{O} R_2 \xrightarrow{1,6-\text{diCO}} R_1 \xrightarrow{O} + \bigoplus_{\substack{R_1 \\ \text{o}}} R_2 \xrightarrow{R_2} = Br \xrightarrow{\qquad \qquad \qquad } R_2 \\ \text{d}^1\text{- illogical} \qquad a^5 \qquad \delta\text{-bromoketone}$$

$$R_2$$
 R_2
 R_2

E] 1,6-bifunctional compounds (contd.):

Let us consider a few generalised disconnection strategies:

4.
$$R_1$$
 R_2
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5

However, none of these look very promising.

The two oxygenated functional groups in these targets have the largest through bond distance that we have seen till now.

If we adopt the *strategy of reconnection* here, i.e. join up the two oxygenated carbons by removing the two =O groups and placing between those carbons a double bond, we are presented with a cyclohexene ring system as our revised target. This six-membered system is easily accessible and sometimes available from natural sources as well.

Of course, in the forward synthesis this C=C bond of the cyclohexene system needs to be oxidatively split into two carbonyl fragments. A good candidate for such a transformation is the ozonolysis with its variety of work-up procedure that allows for easily accessing different oxidation levels. The forward synthesis utilising this concept is generally much more efficient than any other strategy one might think of.

E] 1,6-bifunctional compounds (contd.):

Let us now consider a few examples that use the *strategy of reconnection*:

1. HO OH redraw
$$CO_2H$$
 CO_2H CO_2

* reduction with H₂-Ni

H-O-C-C

3.
$$\xrightarrow{\alpha,\beta} \xrightarrow{\alpha,\beta} \xrightarrow{\alpha,\beta} \xrightarrow{\text{OP}} \xrightarrow{\text{reconnection}} \xrightarrow{\text{FGI}} \xrightarrow{\text{dehydration}} \xrightarrow{\text{OP}} \xrightarrow{\text{OP}} \xrightarrow{\text{Reconnection}} \xrightarrow{\text{PGI}} \xrightarrow{\text{dehydration}} \xrightarrow{\text{PGI}} \xrightarrow{\text{dehydration}} \xrightarrow{\text{PGI}} \xrightarrow{\text{PGI}}$$

non-oxidative work-up (with Me₂S) required to get aldehyde through ozonolysis

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)

dienophile

The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

E] 1,6-bifunctional compounds (contd.):

Let us now consider a few examples that use the *strategy of reconnection*:

$$4. \quad \underbrace{\text{MeO}_2\text{C}}_{\text{OMe}} \xrightarrow{\text{FGI}}_{\text{HO}_2\text{C}} \xrightarrow{\text{HO}_2\text{C}} \xrightarrow{\text{ether}}_{\text{HO}_2\text{C}} \xrightarrow{\text{HO}_2\text{C}} \xrightarrow{\text{HO}_2\text{C}} \xrightarrow{\text{FGI}}_{\text{reconnect}} \xrightarrow{\text{reconnect}} \xrightarrow{\text{FGI}}_{\text{reduction}} \xrightarrow{\text{FGI}} \xrightarrow{\text{reduction}} \xrightarrow{\text{Viith EWG}} \xrightarrow{\text{with EWG}}$$

Wittig

Diels-Alder reaction is an excellent method to access properly substituted cyclohexenes that can serve as 1,6-dicarbonyl source

6.
$$R \xrightarrow{OH} C-O \xrightarrow{ester} R \xrightarrow{FGI} \xrightarrow{reduction} R \xrightarrow{OH} Ac_2O$$

OH Odisconnect R-C OH C-O & reconnect C-O R OH (1,6-diO)

** B-V oxidation is regioselective, O inserted on the more substituted side, It is also stereospecific, proceeds with retention in configuration at the migrating group

reconnect
C-1 & C-6
BaeyerVilliger**

Teconnect
1,6-diO
O
H
O
C
P
Ph
Ph
Ph
Ph

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)

.OH

The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

E] 1,6-bifunctional compounds (contd.):

Let us now consider a few examples that use the *strategy of reconnection*:

7.
$$H_2N \longrightarrow OH \xrightarrow{\text{OO}} OH \xrightarrow{\text{disconnect C-O}} OH \xrightarrow{\text{disconnect C-O}} OH \xrightarrow{\text{and reconnect C-N}} OH \xrightarrow{\text{and reconnect C-N}} OH \xrightarrow{\text{Ooxime}} OH \xrightarrow{\text{C-N}} OH \xrightarrow{\text{oxime}} OH \xrightarrow{\text{C-Pooxime}} OH \xrightarrow{\text{C-Pooxi$$

Birch reduction of anisole affords a cyclohexene derivative that can be cleaved preferentially at the enol ether linkage; ozone targets the most electron-rich C=C selectively

1,3-diCO

CO₂Et

.CO₂Et

1,6-diCO

reconnect

This last example demonstrates that reconnection is not the only way out, 1,6-dicarbonyls can also be made from conventional methods, provided that the illogical synthon can be accessed relatively easily.

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)

E] 1,6-bifunctional compounds (contd.):

Finally, we provide one example where reconnection strategy does not work:

So, how to synthesise this β-diketo compound? We have already done that, remember? No? Alright, here's another alternative to what we already did:

1,3-dicarbonyl target

1,6-dicarbonyl target

impossibly strained - cannot exist

Alternate strategy:

1,3-dicarbonyl target

oxidation 1,6-dicarbonyl target

OH OH
$$CO_2Et \xrightarrow{FGI} CO_2Et \xrightarrow{\alpha,\beta} Knoevenagel$$

m-hydroxybenzaldehyde

oxidation with CrO₃, AcOH; reduction with H₂, Raney Ni, Knoevenagel with malonic acid, esterification needed after decarboxylation.

Try these yourself:

$$CO_2H$$
 CO_2H
 CO_2H

[E.4 and E.5] (both *meso* as well as *active* varieties)

MeO
$$CO_2$$
Me

(exploiting any 1,6-diCO relation that you can reveal)

$$O \longrightarrow CO_2Me$$
 H
 $[E.3]$

via diazonium

NH₂

O

↓ reduction, SnCl₂, HCl

NO₂

C-N aromatic NO₂