
08-04-2022

1

Introduction
 How to distinguish between metal and semiconductor/insulator ?

 What is the origin of positive Hall coefficients? 

 Well, free electron theory of solids does not answer to these questions!

 A productive theory comes from band theory of solids

Elementary Band Theory

Syllabus: Kronig Penny model. Band Gap. Conductor, Semiconductor (P and N type) and insulator.
Conductivity of Semiconductor, mobility, Hall Effect. Measurement of conductivity (4 probe method) & Hall
coefficient

Bloch Theorem

𝑉 𝑥 + 𝑎 = 𝑉(𝑥)

𝑥

The plane wave solution 𝑒௫ for the wave

functions of the free electron model go over

for the periodic potential to solutions of the

form 𝜓 𝑥 = 𝑢(𝑥)𝑒௫ where 𝑢(𝑥) has

the periodicity of the lattice (if the lattice has

a periodicity 𝑎, 𝑢 𝑥 + 𝑎 = 𝑢(𝑥))

𝜓 𝑥 : Bloch function
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(c) Dr. P. Mandal

V0: Large
b: small

𝑉 𝑥 = −
𝑍𝑒ଶ

4𝜋𝜀𝑥
 

𝑉 𝑥 + 𝑎 = 𝑉(𝑥)

𝑥

𝑉 𝑥 = 𝑉 for −𝑏 < 𝑥 < 0

𝑉 𝑥 = 0     for 0 < 𝑥 < 𝑎

𝑉 𝑥 = 𝑉(𝑥 + 𝑎 + 𝑏)

Kronig-Penney Model

Kronig-Penney Model

𝑑ଶ𝜓ଵ

𝑑𝑥ଶ
+

2𝑚𝐸

ℏଶ
𝜓ଵ = 0 ⇒

𝑑ଶ𝜓ଵ

𝑑𝑥ଶ
+ 𝛼ଶ𝜓ଵ = 0  … (1)

𝑑ଶ𝜓ଶ

𝑑𝑥ଶ
+

2𝑚

ℏଶ
𝐸 − 𝑉 𝜓ଶ = 0 ⇒

𝑑ଶ𝜓ଶ

𝑑𝑥ଶ
− 𝛽ଶ𝜓ଶ = 0  … (2)

𝜓ଵ(𝑥) = 𝑒௫𝑢ଵ(𝑥)

𝜓ଶ(𝑥) = 𝑒௫𝑢ଶ(𝑥)

𝛼ଶ =
2𝑚𝐸

ℏଶ
, 𝛽ଶ =

2𝑚

ℏଶ
(𝑉 − 𝐸)

III
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(c) Dr. P. Mandal

𝑑ଶ𝜓ଵ

𝑑𝑥ଶ
+ 𝛼ଶ𝜓ଵ = 0  … (1)

𝜓ଵ(𝑥) = 𝑒௫𝑢ଵ(𝑥)

𝑑𝜓ଵ

𝑑𝑥
=  𝑒௫ 

𝑑𝑢ଵ

𝑑𝑥
+ 𝑖𝑘 𝑒௫𝑢ଵ

Kronig-Penney Model

𝑑ଶ𝜓ଵ

𝑑𝑥ଶ
=  𝑒௫ 

𝑑ଶ𝑢ଵ

𝑑𝑥ଶ
+ 𝑖𝑘𝑒௫ 

𝑑𝑢ଵ

𝑑𝑥

                        +𝑒௫ 
𝑑𝑢ଵ

𝑑𝑥
− 𝑘ଶ 𝑒௫𝑢ଵ

𝑑ଶ𝑢ଵ

𝑑𝑥ଶ
+ 2𝑖𝑘

𝑑𝑢ଵ

𝑑𝑥
+ 𝛼ଶ − 𝑘ଶ 𝑢ଵ = 0  … (3)

𝑑ଶ𝜓ଶ

𝑑𝑥ଶ
− 𝛽ଶ𝜓ଶ = 0  … (2)

𝜓ଶ(𝑥) = 𝑒௫𝑢ଶ(𝑥)

𝑑ଶ𝑢ଶ

𝑑𝑥ଶ
+ 2𝑖𝑘

𝑑𝑢ଶ

𝑑𝑥
+ 𝛽ଶ − 𝑘ଶ 𝑢ଶ = 0 … (4)

Kronig-Penney Model

𝑢ଵ(𝑥) = 𝐴𝑒 ఈି ௫ + 𝐵𝑒ି ఈା ௫ 𝑢ଶ(𝑥) = 𝐶𝑒 ఉି ௫ + 𝐷𝑒ି ఉା ௫

𝑑ଶ𝑢ଵ

𝑑𝑥ଶ
+ 2𝑖𝑘

𝑑𝑢ଵ

𝑑𝑥
+ 𝛼ଶ − 𝑘ଶ 𝑢ଵ = 0  … (3)

𝑑ଶ𝑢ଶ

𝑑𝑥ଶ
+ 2𝑖𝑘

𝑑𝑢ଶ

𝑑𝑥
+ 𝛽ଶ − 𝑘ଶ 𝑢ଶ = 0 … (4)

Boundary conditions:

𝑢ଵ 0 = 𝑢ଶ(0) 𝑢ଵ 𝑎 = 𝑢ଶ(−𝑏)

𝑑𝑢ଵ

𝑑𝑥
ቤ

௫ୀ

=
𝑑𝑢ଶ

𝑑𝑥
ቤ

௫ୀ

𝑑𝑢ଵ

𝑑𝑥
ቤ

௫ୀ

=
𝑑𝑢ଶ

𝑑𝑥
ቤ

௫ୀି

𝛽ଶ − 𝛼ଶ

2𝛼𝛽
sin 𝛽𝑏 sin 𝑎𝛼 + cos 𝛽𝑏 cos 𝛼𝑎 =  cos𝑘(𝑎 + 𝑏) … (5)

III
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(c) Dr. P. Mandal

Kronig-Penney Model
𝛽ଶ − 𝛼ଶ

2𝛼𝛽
sin 𝛽𝑏 sin 𝑎𝛼 + cos 𝛽𝑏 cos 𝛼𝑎 =  cos𝑘(𝑎 + 𝑏) … (5)

𝛼ଶ =
2𝑚𝐸

ℏଶ

𝛽ଶ =
2𝑚

ℏଶ
𝑉 − 𝐸

Consider 𝑉 very large but 𝑏 very small such that 𝑉𝑏 is finite

𝛽ଶ − 𝛼ଶ =
2𝑚

ℏଶ
𝑉 − 2𝐸 ≈

2𝑚

ℏଶ
𝑉

sinh 𝛽𝑏 ≈  𝛽𝑏 cosh 𝛽𝑏 ≈ 1 

2𝑚𝑉

ℏଶ
 

𝛽𝑏

2𝛼𝛽
sin 𝛼𝑎 + cos 𝛼𝑎 = 𝑐𝑜𝑠 𝑘𝑎 

2𝑚𝑉𝑏𝑎

2ℏଶ
 
 sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎 

𝑃
 sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎  … (6)

𝑃 =  
𝑚𝑉𝑏𝑎

ℏଶ

(c) Dr. P. Mandal

Kronig-Penney Model

𝑃
 sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎 … (6) 𝑃 =  

𝑚𝑉𝑏𝑎

ℏଶ
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Kronig-Penney Model
Implications:

Solid State Physics, A J Dekker

𝑃
 sin 𝛼𝑎

𝛼𝑎
+ cos 𝛼𝑎 = cos 𝑘𝑎 … (6)

Kronig-Penney Model

𝐸 =
𝑛ଶ𝜋ଶℏଶ

2𝑚𝑎ଶ
 for 𝑃 → ∞

This recognizes as the energy levels of a particle in a constant potential box of atomic dimensions.
Physically, this could be expected because for large 𝑃 , tunneling through the barriers becomes
improbable.

Implications:

Solid State Physics, A J Dekker

𝑃 =  
𝑚𝑉𝑏𝑎

ℏଶ
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Kronig-Penney Model
Implications:

Solid State Physics, A J Dekker

𝑃 =  
𝑚𝑉𝑏𝑎

ℏଶ

Kronig-Penney Model
Implications:

(d) Discontinuities in the 𝐸 − 𝑘 curve: 𝑘 =
𝑛𝜋

𝑎
,  𝑛 = 1, 2, 3, …

Solid State Physics, A J Dekker
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Kronig-Penney Model
Implications:
(e) Within a given energy band, the energy is a periodic function of 𝑘. For example, if one replaces
𝑘 by 𝑘 + 2𝜋𝑛/𝑎, where 𝑛 is an integer, cos 𝑘𝑎 remains the same. In other words, 𝑘 is not uniquely
determined. It is therefore frequently convenient to introduce the “reduced wave vector’’ which is
limited to the region:

−
𝜋

𝑎
≤ 𝑘 ≤

𝜋

𝑎

Solid State Physics, A J Dekker

Kronig-Penney Model
Implications:

(f) Number of possible wave functions per band: 

Boundary condition: Cyclic or periodic boundary conditions – same as in the theory of elastic waves 

in a chain of atoms: 𝜓 𝑥 + 𝐿 = 𝜓(𝑥)

⇒ 𝑒 ௫ା 𝑢 𝑥 + 𝐿 = 𝑒௫𝑢 𝑥

⇒ 𝑒 = 1 = 𝑒ଶగ ⇒ 𝑘 = 2𝑛𝜋/𝐿, 𝑛 = ±1, ±2, ±3, …

Number of possible wave functions in the range 𝑑𝑘:     𝑑𝑛 = 𝐿/2𝜋 𝑑𝑘

𝑛௫ = න 𝐿/2𝜋 𝑑𝑘
గ/

ିగ/

=
𝐿

𝑎
= 𝑁

Solid State Physics, A J Dekker
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Kronig-Penney Model
Implications:

Solid State Physics, A J Dekker

Motion of Electrons

Velocity:

𝑣 =
𝑑𝜔

𝑑𝑘
=

1

ℏ

𝑑𝐸

𝑑𝑘

Solid State Physics, A J Dekker
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Motion of Electrons
Effective Mass:

𝑑𝐸 = (𝑒𝐹)(𝑣𝑑𝑡) = (𝑒𝐹)
1

ℏ

𝑑𝐸

𝑑𝑘
𝑑𝑡

⇒
𝑑𝐸

𝑑𝑘
𝑑𝑘 =

𝑒𝐹

ℏ

𝑑𝐸

𝑑𝑘
𝑑𝑡                                      

⇒
𝑑𝑘

𝑑𝑡
=

𝑒𝐹

ℏ
                                                         

𝑎 =
𝑑𝑣

𝑑𝑡
=

1

ℏ

𝑑

𝑑𝑡
 

𝑑𝐸

𝑑𝑘
=

1

ℏ

𝑑ଶ𝐸

𝑑𝑘ଶ

𝑑𝑘

𝑑𝑡
=

𝑒𝐹

ℏଶ

𝑑ଶ𝐸

𝑑𝑘ଶ
≡

𝑒𝐹

𝑚∗

𝑚∗ = ℏଶ/
𝑑ଶ𝐸

𝑑𝑘ଶ
𝑓 =

𝑚

𝑚∗
=

𝑚

ℏଶ

𝑑ଶ𝐸

𝑑𝑘ଶ

Solid State Physics, A J Dekker

Motion of Electrons
Effective Mass: 𝒎∗ = ℏ𝟐/

𝒅𝟐𝑬

𝒅𝒌𝟐

Solid State Physics, A J Dekker
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Motion of Electrons
Effective Mass:

𝒇𝒌 =
𝒎

𝒎∗
=

𝒎

ℏ𝟐

𝒅𝟐𝑬

𝒅𝒌𝟐

Solid State Physics, A J Dekker

(c) Dr. P. Mandal

Motion of Electrons
Effective Mass:

𝒎∗ = ℏ𝟐/
𝒅𝟐𝑬

𝒅𝒌𝟐

𝑚∗
  =  ℏଶ

𝜕ଶ𝐸

𝜕𝑘𝜕𝑘

ିଵ

  (𝑖 , 𝑗 ∈  𝑥, 𝑦, 𝑧)

Solid State Physics, A J Dekker
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Motion of Electrons
Effective Mass:

Problem: The dispersion relation of electrons in a 3d lattice is given by 𝐸 = 𝛼 cos 𝑘௫𝑎 +
𝛽 cos 𝑘௬𝑎 + 𝛾 cos 𝑘௭𝑎, where 𝑎 is the lattice constant and 𝛼, 𝛽, 𝛾 are constants. Find the effective
mass of tensor at the corner of the first Brillouin zone (𝜋/𝑎, 𝜋/𝑎, 𝜋/𝑎). [CU – 2016]

𝑚∗
  =  ℏଶ

𝜕ଶ𝐸

𝜕𝑘𝜕𝑘

ିଵ

  (𝑖 , 𝑗 ∈  𝑥, 𝑦, 𝑧)

𝑚∗
௫௫ = ℏଶ

𝜕ଶ𝐸

𝜕𝑘௫
ଶ

ିଵ

ቮ

ೣୀୀୀగ/

= ℏଶ −𝛼𝑎ଶ cos 𝑘௫𝑎 ିଵቚ
ೣୀగ/

=
ℏଶ

𝛼𝑎ଶ

𝑚∗
௬௬ = ℏଶ

𝜕ଶ𝐸

𝜕𝑘௬
ଶ

ିଵ

ቮ

ೣୀୀୀగ/

= ℏଶ −𝛽𝑎ଶ cos 𝑘௬𝑎
ିଵ

ฬ
ೣୀగ/

=
ℏଶ

𝛽𝑎ଶ

𝑚∗
௭௭ = ℏଶ

𝜕ଶ𝐸

𝜕𝑘௭
ଶ

ିଵ

ቮ

ೣୀୀୀగ/

= ℏଶ −𝛾𝑎ଶ cos 𝑘௬𝑎
ିଵ

ฬ
ೣୀగ/

=
ℏଶ

𝛾𝑎ଶ

Motion of Electrons
Effective Mass:

𝑚∗
  =  ℏଶ

𝜕ଶ𝐸

𝜕𝑘𝜕𝑘

ିଵ

  (𝑖 , 𝑗 ∈  𝑥, 𝑦, 𝑧)

𝑚∗
௫௬ = ℏଶ

𝜕ଶ𝐸

𝜕𝑘௫𝜕𝑘௬

ିଵ

ቮ

ೣୀୀୀగ/

= ℏଶ
𝜕

𝜕𝑘௫

 (−𝛽𝑎 sin 𝑘௬𝑎)

ିଵ

อ

ೣୀୀୀగ/

= ∞

𝑚∗
௭௫ = 𝑚∗

௫௭ =  𝑚∗
௭௬ = 𝑚∗

௬௭ =  𝑚∗
௬௫ = ∞

𝑚∗ =
ℏଶ

𝑎ଶ

1 𝛼⁄ ∞ ∞
∞ 1 𝛽⁄ ∞

∞ ∞ 1 𝛾⁄

1

𝑚∗
=

𝑎ଶ

ℏଶ

𝛼 0 0
0 𝛽 0
0 0 𝛾

Or,

Similarly,

21
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Motion of Electrons
Problem: Consider the dispersion relation of tightly bound electrons in a linear lattice with atomic
separation 𝑎 as 𝐸 = 𝐸 − 𝛼 − 2𝛾 cos 𝑘𝑎  (𝛼, 𝐸, 𝛾 are constants). Obtain an expression of the
reciprocal of effective mass (𝑚∗) as a function of 𝐸. Sketch 1/𝑚∗ as a function of 𝐸. Also, find the
maximum velocity of the electrons. [CU – 2015]

𝐸 = 𝐸 − 𝛼 − 2𝛾 cos 𝑘𝑎

⇒
1

𝑚∗
=

1

ℏଶ

𝑑ଶ𝐸

𝑑𝑘ଶ
=

1

ℏଶ
−2 𝛾 −𝑎 𝑎 cos 𝑘𝑎 =

2𝛾𝑎ଶ

ℏଶ
cos 𝑘𝑎 =  

𝑎ଶ

ℏଶ
(𝐸 − 𝛼 − 𝐸)

𝑣 =
1

ℏ

𝑑𝐸

𝑑𝑘
=

1

ℏ
(2𝛾𝑎 sin 𝑘𝑎) ⇒ 𝑣௫ =

2𝛾𝑎

ℏ

𝐸௫ = 𝐸ቚ
ୀିగ/

= 𝐸 − 𝛼 + 2𝛾 𝐸 = 𝐸ቚ
ୀ

= 𝐸 − 𝛼 − 2𝛾

Bandwidth: 𝐸௫ − 𝐸௫ = 4𝛾

(c) Dr. P. Mandal

Conductor, Semiconductor & Insulator

 Band theory of solids leads to the possibility of distinguishing between conductors,

semiconductors and insulators.

 Consider a particular energy band to be filled up with electrons up to a certain value 𝑘ଵ.

 In order to study the effect of an external electric field, we need to know how many electrons are

equivalent to ‘free electrons’ in the band containing certain number (say, N) of electrons.

 The answer to this point, presumably, leads to draw a conclusion on the conductivity associated to

this particular energy band.

Solid State Physics, A J Dekker

23
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(c) Dr. P. Mandal

Conductor, Semiconductor & Insulator

Solid State Physics, A J Dekker

The effective number of free electrons in the energy band 𝑁 = ∑𝑓

For a 1D lattice of length 𝐿, the number of states (excluding spin) within the interval 𝑑𝑘 is 𝐿 𝑑𝑘/2𝜋

𝑁 = 2 ×
𝐿

2𝜋
න 𝑓𝑑𝑘

భ

ିభ

=
𝐿

𝜋
× 2

𝑚

ℏଶ
න

𝑑ଶ𝐸

𝑑𝑘ଶ
𝑑𝑘

భ



=
2𝐿𝑚

𝜋ℏଶ

𝑑𝐸

𝑑𝑘
భ

∵ 𝑓 =
𝑚

𝑚∗
=

𝑚

ℏଶ

𝑑ଶ𝐸

𝑑𝑘ଶ

 𝑁 in a completely filled band vanishes because 𝑑𝐸/𝑑𝑘 భୀగ/ = 0

 𝑁 reaches a maximum for a band filled to the inflection point of the 𝐸 − 𝑘 curve as 𝑑𝐸/𝑑𝑘 is

maximum at the inflection point.

(c) Dr. P. Mandal

Conductor, Semiconductor & Insulator

 Thus, a solid having certain energy bands completely filled and other bands completely empty,

behaves as an insulator.

 On the other hand, a solid containing an incompletely filled energy band shows

metallic/conductor character.

25
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(c) Dr. P. Mandal

Conductor, Semiconductor & Insulator

(c) Dr. P. Mandal

Concept of Hole

 In an intrinsic semiconductor a certain number of electrons are thermally exited from the upper

filled band into the conduction band at temperature above 0K, leaving some of the states in the

normally filled band vacant. These unoccupied states lie near the top of the filled band.

 Consider a single unoccupied state – the ‘hole’, in the filled band of a 1D lattice and consider its

influence on the collective behaviour of this band in presence of an external electric field.

 In absence of external electric field, the current due to all the electrons in a completely filled band

𝐼 = −𝑒  �⃗�



= −𝑒 �⃗� +  �⃗�

ஷ

= 0

Solid State Physics, A J Dekker
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(c) Dr. P. Mandal

Concept of Hole

If the jth electron were missing 𝐼′ = −𝑒  �⃗�

ஷ

= 𝑒�⃗�

In presence of an external electric field �⃗�, the rate of change of the current 𝐼′ is

𝑑𝐼ᇱ

𝑑𝑡
= 𝑒

𝑑�⃗�

𝑑𝑡
= −

𝑒ଶ�⃗�

𝑚
∗

∵
𝑑𝑣

𝑑𝑡
=

𝑒𝐹

𝑚∗

As the vacant state (‘hole’) lies near the top of the band, the effective mass 𝑚
∗ is negative which

makes 𝑑𝐼ᇱ/𝑑𝑡 positive. In other words, a state in which an electron is missing behaves as a

‘positive hole’ with an effective mass 𝑚
∗ .

Solid State Physics, A J Dekker

Hall Effect

 The Hall effect is the production of a voltage difference (the Hall voltage 𝑉ு) across a conductor

or semiconductor, transverse to an electric current (𝐽௫) in the conductor/semiconductor and to an

applied magnetic field (𝐵௭) perpendicular to the current.

 Discovered by Edwin Hall in 1879.

 The Hall coefficient is defined as the ratio of the induced electric field to the product of the

current density and the applied magnetic field.

𝑅ு =
𝐸௬

𝐽௫𝐵௭

 𝑅ு is the characteristic of the material from which the conductor/semiconductor is made, since

its value depends on the type, number, and properties of the charge carriers that constitute the

current.

https://en.wikipedia.org/wiki/Hall_effect
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Hall Effect

𝐸 = 𝐸𝑥ො  ⇒ �⃗� = −𝑣𝑥ො

𝐵 = 𝐵�̂�, 𝑞 = −𝑒

�⃗� = 𝑞 �⃗� × 𝐵 = −𝑒𝑣𝐵 𝑥ො × �̂� = 𝑒𝑣𝐵𝑦ො

�⃗� = −𝑒𝐸ு = 𝑒𝑣𝐵𝑦ො ⇒ 𝐸ு = −𝑒𝑣𝐵𝑦ො

𝐽 = −𝑛𝑒�⃗� = 𝑛𝑒𝑣𝑥ො

𝑅ு =
𝐸௬

𝐽௫𝐵௭
=

−𝑒𝑣𝐵

𝑛𝑒𝑣 𝐵
= −

1

𝑛𝑒

Hall Coefficient and Mobility:

�⃗� = 𝜇𝐸 = 𝜇𝐸𝑥ො 𝐸ு = 𝑣 × 𝐵 = 𝜇𝐸𝐵 𝑥ො × �̂� = −𝜇𝐸𝐵𝑦ො
𝐸௬ = 𝜇𝐸𝐵 = 𝑅ு𝐽௫𝐵௭

⇒ 𝜇𝐸𝐵 = 𝑅ு 𝜎𝐸 𝐵

⇒ 𝜇 = 𝜎𝑅ு

Metals:

Hall Effect
Semiconductors:

Solid State Physics: S P Kuila
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Semiconductors:

Hall Effect

Solid State Physics: S P Kuila

Semiconductors:

Hall Effect

Solid State Physics: S P Kuila
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Hall Effect
Hall Coefficient – Experimental Determination:

𝐸ு = 𝑅ு𝐽௫𝐵௭

𝐽௫ =
𝐼

𝑏𝑑
, 𝐸ு =

𝑉ு

𝑑

𝑅ு =
𝐸ு

𝐽௫𝐵௭
=

𝑉ு
𝑑

𝐵
𝐼

𝑏𝑑

=
𝑉ு𝑏

𝐼𝐵

Hall Effect
Applications:

Solid State Physics: Gupta & Islam
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