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Preliminary Topics

Syllabus: (a) Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar
and Unit Matrices. Transpose of a Matrix. Symmetric and Skew-Symmetric Matrices.
Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-
Singular matrices. Orthogonal and Unitary Matrices. Trace of a Matrix. Inner Product.

(b) Eigenvalues and Eigenvectors. Cayley-Hamiliton Theorem. Diagonalization of
Matrices. Solutions of Coupled Linear Ordinary Differential Equations. Functions of a
Matrix.

1.1 Definitions: Some Terminologies
1. Matrix: A matrix is an array of numbers which may be complex. The array

contains m×n numbers in m rows and n columns. m×n is the order of the matrix.

A =


a11 a12 ... ... a1n

a21 a22 ... ... a2n

... ... ... ... ...

... ... ... ... ...
am1 am2 ... ... amn


The element which belongs to the i-th row and j-th column is denoted as aij.

2. Row matrix: A row matrix contains only one row i.e. the numbers are arrayed in
a single row. The order of such matrix is thus 1 × n.

R =
(

a11 a12 ... ... a1n

)
3. Column matrix: A column matrix contains only one column i.e. the numbers are

arrayed in a single column. The order of such matrix is thus m × 1.

C =


a11
a21
...
...

am1


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4. Null matrix: If all the elements of a matrix are zero, it is called a null matrix i.e.
for a null matrix aij = 0 for all i, j.

5. Square matrix: If the number of rows (m) and the number of columns (n) of
a matrix are equal, it is called a square matrix. The matrix S below is a square
matrix of order 3.

S =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The elements aii are called the diagonal elements.

6. Diagonal matrix: If all the off-diagonal elements of a square matrix are zero but
at least one diagonal element is non-zero, it is called a diagonal matrix i.e. for a
diagonal matrix aij ̸= 0 for all i ̸= j but aii = 0 for at least one i.

D =

 a11 0 0
0 a22 0
0 0 a33


D is a diagonal matrix of order 3.

7. Unit or Identity matrix: If all the diagonal elements of a diagonal matrix are
equal to identity, it is called a unit or identity matrix. For a unit matrix aij = 0
for all i ̸= j and aii = 1 for all i i.e. aij = δij.

I =

 1 0 0
0 1 0
0 0 1

 is a diagonal matrix of order 3.

8. Equal matrices: Two matrices of same order are said to be equal if the elements
of one matrix are equal to the corresponding elements of other matrix i.e. matrices
A and B are equal if aij = bij for all i, j.

1.2 Matrix Algebra
1. Addition & Subtraction: Addition or subtraction of two matrices A and B of

same order is defined as C = A±B where cij = aij ±bij for all i and j. For example,

A =
(

a11 a12 a13
a21 a22 a23

)
and B =

(
b11 b12 b13
b21 b22 b23

)

∴ A ± B =
(

a11 ± b11 a12 ± b12 a13 ± b13
a21 ± b21 a22 ± b22 a23 ± b23

)

Properties:

• Matrix addition is commutative i.e. A + B = B + A.
• Matrix addition is associative i.e. A + (B + C) = (A + B) + C
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2. Multiplication:

(a) Multiplication by a scalar: Multiplying a matrix by a number or scalar (say
k) means multiplying each element by the number i.e. kA = Ak = k(aij).

(b) Matrix product: The product of two matrices A and B is defined as C = AB,
where

cij =
s∑

k=1
aikbkj

For the product to be defined, matrices A and B must be conformable i.e. if
A = (a)ij is an m × n matrix, then B = (b)ij must be an n × s matrix. The
product matrix C is an m × s matrix. Consider, for example,

A =
(

a11 a12 a13
a21 a22 a23

)
and B =

 b11 b12
b21 b22
b31 b32


Therefore, by definition, the product matrix

C =
(

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

)

Consider the following system of equations:

3x − y + 2z = −3
2x + 3y − z = 2 (1.1)
x − 2y + z = 5

The set of equations can be written in matrix form as 3 −1 2
2 3 −1
1 −2 1


 x

y
z

 =

 −3
2
5


Properties:

• Matrix multiplication is, in general, not commutative i.e. AB ̸= BA.
• Matrix multiplication is associative i.e. A(BC) = (AB)C
• Matrix multiplication follows the distributive law i.e. A(B + C) = AB +

AC.
(c) Direct product: The direct product is defined for general matrices. Given an

n × n matrix A and an m × m matrix B, the direct product of A and B is an
nm × nm matrix, and is defined by C = A ⊗ B where Cik,jl = aijbkl. If

A =
(

a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)

C = A ⊗ B =
(

a11B a12B
a21B a22B

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


c⃝Dr. P. Mandal
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3. Commutator of matrices: Commutator of two square matrices A and B of same
order is defined as [A, B] = AB − BA. In general, AB ̸= BA and hence [A, B] ̸= 0.
For example,

A =
(

1 2
1 3

)
and B =

(
1 0
1 2

)
Note that

AB =
(

1 2
1 3

)(
1 0
1 2

)
=
(

3 4
4 6

)
but BA =

(
1 0
1 2

)(
1 2
1 3

)
=
(

1 2
3 8

)

If the commutator [A, B] = AB − BA = 0 i.e. AB = BA, the matrices are said to
be commutative.
Properties:

• [A, B] = −[B, A]
• [A, B + C] = [A, B] + [A, C]
• [A, BC] = [A, B]C + B[A, C]
• [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0

The anticommutator of two matrices is defined as {A, B} = AB + BA.

4. Power of a matrix: For any positive integer n, the power of a square matrix A is
defined as An = AA...A (n times) i.e. A2 = AA, A3 = AAA. In particular, A0 = I,
the unit matrix1.

5. Function of a matrix: The function of a matrix maps a matrix to another matrix.
For example, consider a matrix function f(A) = 3A2 − 2A + I where I is the unit
matrix of same order. A more fancy example is f(A) = ∑

k akAk, where ak are
scalar coefficients. Another common series is defined by

eA =
∞∑

k=0

Ak

k!

There are several techniques for lifting a real function to a square matrix function.
If the real function f(x) has the Taylor series expansion

f(x) = f(0) + f ′(0)x + f ′′(0)x2

2!
+ ...

then a matrix function f(A) can be defined by substituting x by a matrix A i.e.

f(A) = f(0)I + f ′(0)A + f ′′(0)A2

2!
+ ...

where the powers become matrix powers, the additions become matrix sums and
the multiplications become scaling operations.

1A−n = A−1A−1...A−1 (n times) is defined if A is a nonsingular matrix

c⃝Dr. P. Mandal
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6. Transpose of a matrix: For any matrix A, the transpose matrix AT is obtained
by interchanging corresponding rows and columns of A, i.e. if A = (aij), AT = (aji).
For example,

A =
(

1 1 −2
3 0 1

)
⇒ AT =

 1 3
1 0

−2 1


Properties:

• (AT )T = A.
• (A + B)T = AT + BT .
• (AB)T = BT AT .

7. Complex Conjugate: For any matrix A, the complex conjugate matrix A∗ is
formed by taking the complex conjugate of each element of A, i.e. if A = (aij),
A∗ = (a∗

ij) for all i and j. For example,

A =
(

1 2 + i
3 − i i

)
⇒ A∗ =

(
1 2 − i

3 + i −i

)

Obviously, (A∗)∗ = A.

8. Hermitian Conjugate: For an arbitrary matrix A, the Hermitian conjugate ma-
trix A† is obtained by taking the complex conjugate of the matrix, and then the
transpose of the complex conjugate matrix i.e. if A = (aij), A† = (a∗

ji) for all i and
j. For example,

A =
(

2 + 3i 4 − 3i
4i 3

)

⇒ A† =
(

2 − 3i 4 + 3i
−4i 3

)T

=
(

2 − 3i −4i
4 + 3i 3

)

Properties:

• (A†)† = A.
• (A + B)† = A† + B†.
• (AB)† = B†A†.

9. Trace of a matrix: The trace of a square matrix is defined as the sum of its
diagonal elements i.e. Tr(A) = ∑

i aii. For example,

A =
(

2 i
0 3

)
⇒ Tr(A) = 2 + 3 = 5

Properties:

c⃝Dr. P. Mandal
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• Tr(A) = Tr(AT ).
• Tr(A + B) = Tr(A) + Tr(B).
• Tr(AB)=Tr(BA).

10. Determinant of a matrix: The determinant of a square matrix A is defined as
the determinant having same array as that of the matrix and is generally denoted

as |A| or det(A). For example, the determinant of the matrix A =
(

2 3
1 4

)
is

|A| =
∣∣∣∣∣ 2 3

1 4

∣∣∣∣∣ = 5. If the determinant of a matrix is zero i.e. |A| = 0, A is called a

singular matrix.
Properties:

• |AB| = |BA| = |A||B|
• |AT | = |A|

11. Cofactor matrix:
The cofactor matrix is defined as Ac = Aij. For example,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ⇒ Ac =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


where

A11 = (−1)1+1
∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣ , A12 = (−1)1+2
∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣ , A13 = (−1)1+3
∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
A21 = (−1)2+1

∣∣∣∣∣ a12 a13
a32 a33

∣∣∣∣∣ , A22 = (−1)2+2
∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣ , A23 = (−1)2+3
∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣∣
A31 = (−1)3+1

∣∣∣∣∣ a12 a13
a22 a23

∣∣∣∣∣ , A32 = (−1)3+2
∣∣∣∣∣ a11 a13

a21 a23

∣∣∣∣∣ , A33 = (−1)3+3
∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
The cofactor matrix of A =

(
2 −1
0 3

)
is Ac =

(
3 0
1 2

)

12. Adjoint of a matrix:
The adjoint of a matrix is defined as the transpose of its cofactor matrix i.e.

adj(A) = AcT . For example, consider the matrix A =
(

2 −1
0 3

)
. The cofac-

tor matrix Ac =
(

3 0
1 2

)
.

Hence, the adjoint matrix adj(A) =
(

3 0
1 2

)T

=
(

3 1
0 2

)
.

c⃝Dr. P. Mandal
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13. Inverse of a matrix:
For a given nonsingular matrix A, there exists another matrix B such that AB =
BA = I. Matrix B is called the inverse matrix of A (B = A−1). For example,
consider the following matrices:

A =
(

2 −5
−1 3

)
& B =

(
3 5
1 2

)
Note that,

AB =
(

2 −5
−1 3

)(
3 5
1 2

)
=
(

1 0
0 1

)
= I

Similarly,

BA =
(

3 5
1 2

)(
2 −5

−1 3

)
=
(

1 0
0 1

)
= I

∴ B =
(

3 5
1 2

)
= A−1, the inverse matrix of A.

The inverse matrix can be found by using the relation

A−1 = adj(A)
|A|

(1.2)

Problem 1: Find out the inverse matrix of A =
(

2 −1
0 3

)
.

Solution: Adjoint matrix of A i.e. adj(A) =
(

3 1
0 2

)
. The determinant of the

matrix i.e. |A| =
∣∣∣∣∣ 3 1

0 2

∣∣∣∣∣ = 6

∴ A−1 = 1
6

(
3 1
0 2

)
.

Properties:

• (A−1)−1 = A.
• (A + B)−1 = A−1 + B−1.
• (AB)−1 = B−1A−1.

14. Derivative of a matrix: The derivative of a matrix with respect to a variable say,
x is equal to the derivative of each element with respect x separately. For example,

d

dx

(
x x2 1
ex 0 2x3

)
=
(

1 2x 0
ex 0 6x2

)

15. Integral of a matrix: The integral of a matrix with respect to a variable say, x
is equal to the integral of each element with respect x separately. For example,∫ (

x 3x2 1
ex 0 2x3

)
=
(

x2

2 x3 x

ex c x4

2

)
+
(

c1 c2 c3
c4 0 c5

)

c⃝Dr. P. Mandal
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1.3 Special Square Matrices
1. Singular and non-singular matrices: If the determinant of a matrix is zero,

it is called singular i.e. for a singular matrix A, |A| = 0. Consider the following
matrix for example:

A =
(

1 −1
1 −1

)
As seen, |A| = −1 + 1 = 0. Therefore, it is a singular matrix.
For a non-singular matrix, |A| ̸= 0.

2. Symmetric and skew-symmetric matrices: A matrix is said to be symmetric
if the transpose matrix is equal to the matrix itself i.e. for a symmetric matrix A,
AT = A. For example, consider the following matrix:

A =
(

0 1
1 0

)
⇒ AT =

(
0 1
1 0

)
= A

If AT = −A, the matrix A is called anti-symmetric or skew-symmetric. For an
example, consider the matrix below:

A =
(

0 −1
1 0

)
⇒ AT =

(
0 1

−1 0

)
= −A

Problem 2: Diagonal elements of a skew-symmetric matrix are zero.
Solution: For a skew-symmetric matrix A, AT = −A. In terms of the ij-th ele-
ment, aij = −aji.
Now, for the diagonal elements i = j.
Therefore, aii = −aii or, aii = 0 for all i.

Problem 3: Any square matrix can be uniquely written as the sum of a symmetric
matrix and a skew-symmetric matrix.
Solution: Let A is a square matrix.

A = 1
2

(A + AT ) + 1
2

(A − AT ) = P + Q

Now, P T = 1
2

(A + AT )T = 1
2

{AT + (AT )T } = 1
2

(AT + A) = P

QT = 1
2

(A − AT )T = 1
2

{AT − (AT )T } = 1
2

(AT − A) = −Q

i.e. P is a symmetric matrix and Q is a skew-symmetric matrix. So any square
matrix can be written as the sum of a symmetric matrix and a skew-symmetric
matrix. To prove the representation unique, we assume A = R + S where R is a
symmetric matrix and S is a skew-symmetric matrix i.e. RT = R and ST = −S.

AT = RT + ST = R − S

⇒ R = 1
2

(A + AT ), S = 1
2

(A − AT )

c⃝Dr. P. Mandal
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3. Hermitian and skew-Hermitian matrices: A matrix is said to be Hermitian
if the Hermitian conjugate matrix is equal to the matrix itself i.e. for a Hermitian
matrix H, H† = H. For example, consider the following matrix:

H =
(

0 i
−i 0

)

⇒ H† =
(

0 −i
i 0

)T

=
(

0 i
−i 0

)
= H

If H† = −H, the matrix H is called anti-Hermitian or skew-Hermitian. For an
example, consider the matrix below:

H =
(

0 i
i 0

)

⇒ H† =
(

0 −i
−i 0

)T

=
(

0 −i
−i 0

)
= −H

Problem 4: For an arbitrary matrix A, show that A + A† and i(A − A†) are both
Hermitian.
Solution: A matrix H is Hermitian if H† = H. Now,(

A + A†
)†

= A† + (A†)†

= A† + A

Therefore, A + A† is Hermitian. Similarly,[
i
(
A − A†

)]†
= −i

[
A† + (A†)†

]
= −i

(
A† − A

)
= i(A − A†)

Therefore, i(A − A†) is also Hermitian.

4. Orthogonal matrix: For a unitary matrix O, OOT = OT O = I, the identity
matrix. Consider the following example.

O =
(

0 1
1 0

)
⇒ OT =

(
0 1
1 0

)

∴ OOT =
(

0 1
1 0

)(
0 1
1 0

)
=
(

1 0
0 1

)
= I = OT O

So, O is a unitary matrix.

Problem 5: Show that the determinant of an orthogonal matrix is ±1.

c⃝Dr. P. Mandal
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Solution: For an orthogonal matrix O, OOT = OT O = I, the identity matrix.
Now,

|OOT | = |I| = 1
⇒ |O||OT | = 1

⇒ |O|2 = 1 (∵ |OT | = |O|)
⇒ |O| = ±1.

Problem 6: Show that the inverse of an orthogonal matrix is equal to its transpose
i.e. O−1 = OT .
Solution: For an orthogonal matrix O, OOT = OT O = I. Since |O| = ±1, the
inverse matrix O−1 exists. Now,

O−1OOT = O−1I

⇒ O−1 = OT (∵ O−1O = I)

5. Unitary matrix: For a unitary matrix U , UU † = U †U = I, the identity matrix.
Consider the following example.

U =
(

0 i
i 0

)
⇒ U † =

(
0 −i

−i 0

)

∴ UU † =
(

0 i
i 0

)(
0 −i

−i 0

)
=
(

1 0
0 1

)
= I = U †U

Hence, U is a unitary matrix.

Problem 7: Show that the inverse of a unitary matrix is equal to its Hermitian
conjugate i.e. U−1 = U †.
Solution: For a unitary matrix U , UU † = U †U = I. If U−1 is the inverse matrix
of U , U−1U = I. Now,

U−1UU † = U−1I

⇒ U−1 = U †

6. Self-adjoint matrix: If the transpose of the cofactor matrix i.e. the adjoint of
any arbitrary matrix is equal to the matrix itself, it is called a self-adjoint matrix
i.e. for a self-adjoint matrix adj(A) = A. For example,

A =
(

−1 0
0 −1

)
⇒ Ac =

(
−1 0
0 −1

)

adj(A) =
(

−1 0
0 −1

)T

=
(

−1 0
0 −1

)
= A

c⃝Dr. P. Mandal
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1.4 Eigenvalue Problems
Every square matrix A satisfies a relation

AX = λX (1.3)

where λ is a scalar (real or complex) and X is a column matrix. Eq. (1.3) is called the
eigenvalue equation of matrix A with eigenvalue λ and eigenvector X. If A is a square
matrix of order n, X is a column matrix of order n × 1.

From eq. (1.3), (AX − λI)X = 0. In terms of the elements of the matrices A and X,
a11 − λ a12 ... ... a1n

a21 a22 − λ ... ... a2n

... ... ... ... ...

... ... ... ... ...
an1 an2 ... ... ann − λ




x1
x2
...
...
xn

 = 0 (1.4)

⇒ (a11 − λ)x1 + a12x2 + ...... + a1nxn = 0
a21x1 + (a22 − λ)x2 + ...... + a2nxn = 0
..................................................... = 0
..................................................... = 0

an1x1 + an2x2 + ...... + (ann − λ)xn = 0

Thus we have a set of n number of linear homogeneous equations. Non-trivial solution
exists if the determinant of the coefficients vanishes, i.e.

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 ... ... a1n

a21 a22 − λ ... ... a2n

... ... ... ... ...

... ... ... ... ...
an1 an2 ... ... ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ |A − λI| = 0 (1.5)

D(λ) is a polynomial of degree n. It is called the characteristics polynomial of the
given matrix A.

D(λ) = |A − λI| = 0 (eq. 1.5) is the characteristic equation of the matrix A. The
equation has n roots i.e. n number of possible values of λ - say λ1, λ2, ...., λn (some
of them may be equal). Thus we conclude that a matrix of order n has n number of
eigenvalues.

The polynomial D(λ) of degree n can be expressed as

D(λ) = |A − λI| = c0 + c1λ + c2λ
2 + ..... + cn−1λ

n−1 + cnλn (1.6)

which implies that c0 = |A|.
As λ1, λ2, ...., λn are the roots of the characteristic equation (eq. 1.5),

D(λ) = (λ1 − λ)(λ2 − λ).....(λn − λ) (1.7)

c⃝Dr. P. Mandal
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By speculation of eq. 1.6 and eq. 1.7

λ1λ2....λn = c0 = |A| (1.8)

Thus the product of the eigenvalues of a matrix is equal to its determinant.
Similary, by inspection of eq. 1.6 and eq. 1.7 (equating the coefficients of λn−1) we

find

cn−1 = (−1)n−1(a11 + a22 + .... + ann) = (−1)n−1(λ1 + λ2 + .... + λn)
⇒ λ1 + λ2 + .... + λn = a11 + a22 + .... + ann = Tr(A) (1.9)

Thus the sum of the eigenvalues is equal to the trace of the matrix.

Problem 8: Find the trace and determinant of the matrix A =
(

2 −1
3 −2

)
and hence

determine its eigenvalues.
Solution: The trace of the matrix is the sum of its diagonal elements i.e. Tr(A) =

2 − 2 = 0.
The determinant of the matrix is

|A| =
∣∣∣∣∣ 2 −1

3 −2

∣∣∣∣∣ = −4 + 3 = −1

If λ1 and λ2 are the eigenvalues of the matrix, by eq. 1.8 and eq. 1.9 we have

λ1 + λ2 = Tr(A) = 0
λ1λ2 = |A| = −1

Solving these equations, we find the eigenvalues as λ1 = −1, λ2 = 1.

How to determine the eigenvalues and the normalized eigenvectors of a matrix? Let
us understand with the following examples.

Example 1: A =
(

2 −1
3 −2

)
The eigenvalue equation of the matrix is AX = λX or, (A − λI)X = 0 where λ is

the eigenvalue and X is the corresponding eigenvector. The characteristic equation is
|A − λI| = 0 i.e. ∣∣∣∣∣ 2 − λ −1

3 −2 − λ

∣∣∣∣∣ = 0

⇒ (2 − λ)(2 + λ) + 3 = 0
⇒ λ2 = 1

or, λ = ±1

Thus the eigenvalues are λ1 = −1 and λ2 = 1.
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Let, X1 is the eigenvector of A which corresponds to the eigenvalue λ1 = −1. From
the eigenvalue equation AX1 = λ1X1, we have

(A − λ1I)X1 = 0

⇒
(

3 −1
3 −1

)(
x1
x2

)
= 0

⇒ 3x1 − x2 = 0
or, x2 = 3x1

If x1 = a, x2 = 3a where a is an arbitrary number (̸= 0). The eigenvector of the given

matrix corresponding to the eigenvalue λ1 = −1 is X1 =
(

a
3a

)
. In normalized form,

X1n = 1√
10

(
1
3

)
.

Similarly, let us consider X2 as the eigenvector of A corresponding to the eigenvalue
λ2 = 1. From the eigenvalue equation AX2 = λ2X2, we have

(A − λ2I)X2 = 0

⇒
(

1 −1
3 −3

)(
x1
x2

)
= 0

⇒ x1 − x2 = 0
or, x1 = x2

If x1 = b, x2 = b where b is another arbitrary number ( ̸= 0). Therefore, the eigenvector

of the given matrix corresponding to the eigenvalue λ2 = 1 is X2 =
(

b
b

)
. In normalized

form, X2n = 1√
2

(
1
1

)
.

Example 2: A =
(

0 −1
1 0

)
The eigenvalue equation of the matrix is AX = λX or, (A − λI)X = 0 where λ is

the eigenvalue and X is the corresponding eigenvector. The characteristic equation is
|A − λI| = 0 i.e. ∣∣∣∣∣ −λ 0

1 −λ

∣∣∣∣∣ = 0

⇒ λ2 + 1 = 0
or, λ = ±i

Thus the eigenvalues are λ1 = −i and λ2 = i.
Let, X1 is the eigenvector of A which corresponds to the eigenvalue λ1 = −i. From

the eigenvalue equation AX1 = λ1X1, we have
(A − λ1I)X1 = 0

⇒
(

i −1
1 i

)(
x1
x2

)
= 0

⇒ ix1 − x2 = 0
or, x2 = ix1
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If x1 = a, x2 = ia where a is an arbitrary number (̸= 0). The eigenvector of the given

matrix corresponding to the eigenvalue λ1 = −1 is X1 =
(

a
ia

)
. In normalized form,

X1n = 1√
2

(
1
i

)
.

Similarly, let us consider X2 as the eigenvector of A corresponding to the eigenvalue
λ2 = i. From the eigenvalue equation AX2 = λ2X2, we have

(A − λ2I)X2 = 0

⇒
(

−i −1
1 −i

)(
x1
x2

)
= 0

⇒ x1 − ix2 = 0
or, x1 = ix2

If x2 = b, x1 = ib where b is another arbitrary number ( ̸= 0). Therefore, the eigenvector

of the given matrix corresponding to the eigenvalue λ2 = i is X2 =
(

ib
b

)
. In normalized

form, X2n = 1√
2

(
i
1

)
.

Example 3: A =

 1 0 0
0 0 2
0 2 0


The eigenvalue equation of the matrix is AX = λX or, (A − λI)X = 0 where λ is

the eigenvalue and X is the corresponding eigenvector. The characteristic equation is
|A − λI| = 0 i.e. ∣∣∣∣∣∣∣

1 − λ 0 0
0 −λ 2
0 2 −λ

∣∣∣∣∣∣∣ = 0

⇒ (1 − λ)(λ2 − 4) = 0
or, λ = 1, ±2

Thus the eigenvalues are λ1 = −2, λ2 = 1 and λ3 = 2.
Let, X1 is the eigenvector of A which corresponds to the eigenvalue λ1 = −2. From

the eigenvalue equation AX1 = λ1X1, we have

(A − λ1I)X1 = 0

⇒

 3 0 0
0 2 2
0 2 2


 x1

x2
x3

 = 0

⇒ 3x1 = 0 & x2 + x3 = 0
or, x1 = 0 & x2 = −x3

If x3 = a, x2 = −a where a is an arbitrary number ( ̸= 0). The eigenvector of the given

matrix corresponding to the eigenvalue λ1 = −2 is X1 =

 0
−a
a

. In normalized form,
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X1n = 1√
2

 0
−1
1

.

Similarly, let us consider X2 as the eigenvector of A corresponding to the eigenvalue
λ2 = 1. From the eigenvalue equation AX2 = λ2X2, we have

(A − λ2I)X2 = 0

⇒

 0 0 0
0 −1 2
0 2 −1


 x1

x2
x3

 = 0

⇒ −x2 + 2x3 = 0 & 2x2 − x3 = 0
or, x2 = x3 = 0

Let x1 = b, an arbitrary number ( ̸= 0). The eigenvector of the given matrix corresponding

to the eigenvalue λ2 = 1 is X2 =

 b
0
0

. In normalized form, X2n =

 1
0
0

.

If X3 is the eigenvector of A corresponding to the eigenvalue λ3 = 2, from the eigen-
value equation AX3 = λ3X3 we have

(A − λ3I)X3 = 0

⇒

 −1 0 0
0 −2 2
0 2 −2


 x1

x2
x3

 = 0

⇒ x1 = 0 & x2 = x3

Let x2 = x3 = c, where c is an arbitrary number ( ̸= 0). The eigenvector of the given

matrix corresponding to the eigenvalue λ3 = 2 is X3 =

 0
c
c

. In normalized form,

X3n = 1√
2

 0
1
1

.

1.4.1 Corollaries
1. Eigenvalues of a diagonal matrix are equal to its diagonal elements.

Proof: Consider a diagonal matrix of order n:


a11 0 ... ... 0
0 a22 ... ... 0
... ... ... ... ...
... ... ... ... ...
0 0 ... ... ann


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The characteristic equation of the matrix is

|D − λI| = 0

⇒

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 ... ... a1n

a21 a22 − λ ... ... a2n

... ... ... ... ...

... ... ... ... ...
an1 an2 ... ... ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (a11 − λ)(a22 − λ)...(ann − λ) = 0

i.e. λ = a11, a22, ..., ann, the diagonal elements of the matrix.

2. At least one eigenvalue of a singular matrix is zero.
Proof: Consider a singular matrix A i.e. |A| = 0.
If λ1, λ2, λ3, ... are the eigenvalues of the matrix A, the product of the eigenvalues
must be equal to the determinant of A (eq. 1.8) i.e.

λ1.λ2.λ3... = |A| = 0

Therefore, at least one of the eigenvalues must be zero.

3. If λ is the eigenvalue of a non-singular matrix A, the eigenvalue of A−1 is 1/λ
corresponding to a given eigenvector.
Proof: Let λ and λ′ are respectively the eigenvalues of a non-singular matrix A and
its inverse matrix A−1 corresponding to the same eigenvector X. The eigenvalue
equations are

AX = λX

A−1X = λ′X

Now multiplying the first equation by A−1 from left

A−1AX = λA−1X

⇒ X = λλ′X

or, (1 − λλ′)X = 0

Since X is the eigenvector (X ̸= 0), λ′ = 1/λ i.e. the eigenvalues of the inverse
matrix are the reciprocal of the eigenvalues of the original matrix.

4. Eigenvalues of a unitary matrix are of unit magnitude.
Proof: Consider a unitary matrix U having an eigenvalue λ corresponding to an
eigenvector X. The eigenvalue equation is

UX = λX (1.10)

Taking the Hermitian conjugate of eq. 1.10

(UX)† = (λX)†

⇒ X†U † = λ∗X† (1.11)
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Multiplying eq. (1.11) by eq. (1.10) from left

X†U †UX = λ∗λX†X

⇒ X†X = λ∗λX†X (∵ U is unitary, U †U = I)
or, (1 − |λ|2)X†X = 0

⇒ 1 − |λ|2 = 0 (∵ X†X ̸= 0)
⇒ |λ|2 = 1

5. The eigenvalues of a Hermitian matrix are real and the eigenvectors corresponding
to different eigenvalues are orthogonal.
Proof: Let us consider a Hermitian matrix H having an eigenvalue λ corresponding
to an eigenvector X. The eigenvalue equation is

HX = λX (1.12)

Multiplying eq.(1.12) by X† from left

X†HX = λX†X (1.13)

Taking the hermitian conjugation of eq. (1.12),

(HX)† = (λX)†

⇒ X†H† = λ∗X†

or, X†H = λ∗X† (∵ H is Hermitian, H† = H) (1.14)

Multiplying eq.(1.14) by X from right

X†HX = λ∗X†X (1.15)

Comparing eq.(1.13) and eq.(1.15),

λX†X = λ∗X†X

⇒ (λ − λ∗)X†X = 0
⇒ λ∗ = λ (∵ X†X ̸= 0)

Thus the eigenvalues of a Hermitian matrix are real.
Now consider two distinct eigenvalues λ1 and λ2 of the Hermitian matrix H corre-
sponding to the eigenvectors X1 and X2 respectively. λ∗

1 = λ1, λ∗
2 = λ2 and λ1 ̸= λ2.

The eigenvalue equations are

HX1 = λ1X1 (1.16)
HX2 = λ2X2 (1.17)

Taking the hermitian conjugation of eq. (1.17),

(HX2)† = (λX2)†

⇒ X†
2H = λ2X

†
2 (∵ H† = H & λ∗

2 = λ2) (1.18)
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Multiplying eq.(1.18) by X1 from right

X†
2HX1 = λ2X

†
2X1 (1.19)

Multiplying eq.(1.16) by X†
2 from left

X†
2HX1 = λ1X

†
2X1 (1.20)

Comparing eq. 1.19 and eq. 1.20,

λ1X
†
2X1 = λ2X

†
2X1

⇒ (λ1 − λ2)X†
2X1 = 0

⇒ X†
2X1 = 0 (∵ λ2 ̸= λ1)

Thus X1 and X2 are orthogonal.

6. If two matrices commute, they will have simultaneous eigenfunction.
Proof: Let two matrices A and B commute i.e. AB = BA.
If X is an eigenvector of A and λ is the associated eigenvalue, AX = λX.
Multiplying by B from left,

BAX = λBX

or, ABX = λBX (∵ AB = BA)
⇒ A(BX) = λ(BX)

Thus BX is another eigenfunction of A for the same eigenvalue λ. BX is therefore,
a scalar multiple of X i.e.

BX = µX (1.21)

This is the eigenvalue equation of matrix B with eigenvalue µ and associated eigen-
function X. Thus X is the simultaneous eigenfunction for the matrices A and
B.

1.5 Cayley-Hamilton Theorem
Cayley-Hamilton theorem states that every square matrix satisfies its own characteris-
tic equation. Let us consider a matrix A of order n. If λ is the eigenvalue of A, the
characteristic equation is D(λ) = |A − λI| = 0. We rewrite eq. 1.6 as

D(λ) = c0 + c1λ + c2λ
2 + ..... + cnλn =

n∑
i=0

ciλ
i (1.22)

is a polynomial of order n. The Cayley-Hamilton theorem states that substituting the
matrix A for λ in this polynomial (eq. 1.22) results in the null matrix i.e.

D(A) =
n∑

i=0
ciA

i = 0 (1.23)
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The theorem can be verified with the following example.

Consider a matrix A =
(

2 −1
3 −2

)
. The characteristic equation of the matrix is

D(λ) =
∣∣∣∣∣ 2 − λ −1

3 −2 − λ

∣∣∣∣∣ = 0

⇒ D(λ) = λ2 − 1 = 0 (1.24)

By Cayley-Hamilton theorem, the characteristic eq. 1.24 will be satisfied by the matrix
A i.e. D(A) = A2 − I = 0 or, A2 = I. Now,

A2 =
(

2 −1
3 −2

)(
2 −1
3 −2

)
=
(

1 0
0 1

)
= I (q.e.d.)

Cayley-Hamilton theorem is often used to determine the inverse of a matrix. Given
the characteristic equation (eq. 1.22) of a matrix A, Cayley-Hamilton theorem implies

D(A) =
n∑

i=0
ciA

i = c0I + c1A + c2A
2 + ..... + cnAn = 0 (1.25)

Multiplying eq. 1.25 by A−1,

c0IA−1 + c1AA−1 + c2A
2A−1 + ..... + cnAnA−1 = 0

or, c0A
−1 + c1I + c2A + ..... + cnAn−1 = 0

or, c0A
−1 = −(c1I + c2A + ..... + cnAn−1)

⇒ A−1 = − 1
c0

(c1I + c2A + ..... + cnAn−1) = − 1
c0

n∑
i=1

ciA
i−1

Problem 9: Determine the inverse of the matrix A =

 2 0 1
1 1 2
0 1 1

 by using the

Cayley-Hamilton theorem.
Solution: The characteristic equation of the matrix is∣∣∣∣∣∣∣

2 − λ 0 1
1 1 − λ 2
0 1 1 − λ

∣∣∣∣∣∣∣ = 0

⇒ (2 − λ){(1 − λ)2 − 2} + 1 = 0
⇒ λ3 − 4λ2 + 3λ + 1 = 0 (1.26)

By Cayley-Hamilton theorem, eq. 1.26 will be satisfied by the matrix A itself i.e.

A3 − 4A2 + 3A + I = 0 (1.27)

Multiplying eq. 1.27 by A−1,

A3A−1 − 4A2A−1 + 3AA−1 + IA−1 = 0
⇒ A−1 = −(A2 − 4A + 3I)
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Now, A2 =

 2 0 1
1 1 2
0 1 1


 2 0 1

1 1 2
0 1 1

 =

 4 1 3
3 3 5
1 2 3



∴ A−1 = −A2 + 4A − 3I = −

 4 1 3
3 3 5
1 2 3

+ 4

 2 0 1
1 1 2
0 1 1

− 3

 1 0 0
0 1 0
0 0 1



=

 1 −1 1
1 2 3

−1 2 2



1.6 Diagonalization of Matrices
A diagonal matrix corresponding to a square matrix is a matrix of same order having
its diagonal elements as the eigenvalues of the original matrix and all other elements are
zero. For example, consider

A =


a11 a12 ... ... a1n

a21 a22 ... ... a2n

... ... ... ... ...

... ... ... ... ...
an1 an2 ... ... ann


and the eigenvalues of A are λ1, λ2, ... λn. Therefore, the diagonal matrix of A is

D =


λ1 0 ... ... 0
0 λ2 ... ... 0
... ... ... ... ...
... ... ... ... ...
0 0 ... ... λn


If A has n number of linearly independent eigenvectors, a matrix S can be found such
that S−1AS = D, the diagonal matrix. The matrix S is called the diagonalizing matrix.

Let, X1, X2, ... Xn are the linearly independent eigenvectors of A. Thus the diago-
nalizing matrix

S = (X1X2...Xn) =


x11 x12 ... ... x1n

x21 x22 ... ... x2n

... ... ... ... ...

... ... ... ... ...
xn1 xn2 ... ... xnn


where we denote the eigenvectors Xi by the column matrices having elements x1i, x2i, ...,
xni.

Note that the diagonalizing matrix S is not unique as we could arrange the eigenvec-
tors X1, X2, ... Xn in any order to construct it. The following steps may be followed to
diagonalize a matrix:
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• Find the eigenvalues of original matrix.

• Find out corresponding eigenvectors. The eigenvectors must be linearly indepen-
dent. Otherwise, the matrix will not be diagonalizable.

• Construct the diagonalizing matrix S with its column elements as the linearly in-
dependent eigenvectors.

• Determine the inverse matrix S−1.

• The matrix D = S−1AS is the diagonal matrix with λ1, λ2, ... λn as its successive
diagonal elements, where λi is the eigenvalue corresponding to the eigenvector Xi.

Problem 10: Diagonalize the matrix

A =
(

2 −1
3 −2

)

Solution: Note that the eigenvalues of A are λ1 = −1, λ2 = 1. Corresponding

eigenvectors are X1 =
(

1
3

)
and X2 =

(
1
1

)
respectively. The eigenvectors are linearly

independent2.

Thus the diagonalizing matrix S =
(

1 1
3 1

)

The inverse matrix S−1 = −1
2

(
1 −1

−3 1

)
Therefore, the diagonal matrix

D = S−1AS = −1
2

(
1 −1

−3 1

)(
2 −1
3 −2

)(
1 1
3 1

)
=
(

−1 0
0 1

)

1.6.1 Corollaries
1. Diagonalizing matrix of a real symmetric matrix is orthogonal.

Proof: Let us consider a symmetric matrix A i.e. AT = A. If λi are the eigenvalues
of A and S is the diagonalizing matrix,

S−1AS = D = diag(λ1, λ2, ...λn)
⇒ (S−1AS)T = DT

⇒ ST AT (S−1)T = D

⇒ ST A(S−1)T = S−1AS

⇒ ST = S−1

⇒ ST S = I

i.e. S is an orthogonal matrix.
2The task is left for the readers
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2. Diagonalizing matrix of a Hermitian matrix is unitary.
Proof: Let us consider a Hermitian matrix H i.e. H† = H. If D is the diagonal
matrix and S is the corresponding diagonalizing matrix,

S−1HS = D

⇒ (S−1HS)† = D†

⇒ S†H†(S−1)† = D

⇒ S†H(S−1)† = S−1HS

⇒ S† = S−1

⇒ S†S = I

i.e. S is unitary.

1.7 Similarity Transformation
Consider a square matrix A of order n and a non-singular matrix S such that S−1AS = B,
another square matrix of same order as A. Matrix B is similar to A and the transforma-
tion from A to B through the relation S−1AS = B is called similarity transformation.
Diagonalization is a special type of similarity transformation.

Problem 11: Eigenvalues of a matrix remain invariant under similarity transforma-
tion

Solution: Consider a similarity transformation S−1AS = B. If λ is the eigenvalue of
B, the characteristic equation is |B − λI| = 0 i.e.

|S−1AS − λI| = 0
⇒ |S−1AS − S−1λIS| = 0

⇒ |S−1(A − λI)S| = 0
⇒ |S−1||A − λI||S| = 0
⇒ |S−1S||A − λI| = 0

⇒ |A − λI| = 0

which is the characteristic equation of the original matrix A with same eigenvalue λ.
Thus the eigenvalues remain invariant under similarity transformation.

1.8 Unitary Transformation
The similarity transformation may be done by a unitary matrix U . The transformation
U−1AU = B is called unitary transformation. Since for a unitary matrix U , U−1 = U †;
the unitary transformation may be defined as B = U †AU .

Problem 12: A Hermitian matrix remains Hermitian under unitary transformation.
Solution: Let A is a Hermitian matrix i.e. A† = A.
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The unitary transformation matrix B = U−1AU = U †AU where U is a unitary matrix
(UU † = I & U−1 = U †).

B = U †AU

⇒ B† = (U †AU)†

= U †A†(U †)†

= U †AU (∵ A† = A)
= B

Thus B is Hermitian if A is Hermitian.
Problem 13: The norm of a matrix remains unchanged under the unitary transfor-

mation.
Solution: Consider a matrix A and its unitary transformation matrix B = U−1AU ,

where U is a unitary matrix i.e. UU † = U †U = I or U−1 = U †. Now,

B† = (U−1AU)† = (U †AU)† = U †A†U

Multiplying the above equation by B = U †AU from right

B†B = U †A†UU †AU = U †A†AU

⇒ |B†B| = |U †||A†A||U | = |U †U ||A†A| = |A†A|

Thus the norm of the matrix remains invariant under the unitary transformation.

1.9 Evaluating Power of a Matrix
Consider diagonalization of a matrix A by the matrix S: S−1AS = D or, A = SDS−1.
For a function f(A) of matrix A, we have

f(A) = Sf(D)S−1, (1.28)

where f(D) is similar function of D. Thus from eq. 1.28, for any power An of matrix A

An = SDnS−1 (1.29)

Problem 14: A =
(

2 −1
3 −2

)
. Find A50.

Solution: Refer to Problem 10. The diagonal matrix D =
(

−1 0
0 1

)
and the diag-

onalising matrix S =
(

1 1
3 1

)
. The inverse matrix S−1 = −1

2

(
1 −1

−3 1

)
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∴ By eq. 1.29,

A50 = SD50S−1 = −1
2

(
1 −1

−3 1

)(
−1 0
0 1

)50 ( 1 1
3 1

)

= −1
2

(
1 −1

−3 1

)(
1 0
0 1

)(
1 1
3 1

)

=
(

1 0
0 1

)

1.10 Solutions of Linear Coupled First Order Ordi-
nary Differential Equations

Consider the following pair of linear coupled first order differential equations:

y′
1(t) = a11y1(t) + a12y2(t)

y′
2(t) = a21y1(t) + a22y2(t)

The equations, in matrix form, can be represented as(
y′

1
y′

2

)
=
(

a11 a12
a21 a22

)(
y1
y2

)
i.e. Y ′ = AY

Let the boundary conditions are y1 = c1 and y2 = c2 i.e. Y (0) =
(

c1
c2

)
Steps:

• Determine the eigenvalues λ1, λ2, ... of the matrix A.

• Find out the corresponding eigenvectors X1, X2, ...

• The solutions of the coupled equations can be written as Y (t) = ∑
i aie

λitXi, where
ai are arbitrary constants.

• Applying the boundary conditions ai can be determined and exact solution is ob-
tained.

Let us consider the following set of equations:

y′
1 = 2y1 + 3y2

y′
2 = 4y1 + y2

The given initial conditions are y1(0) = 2, y2(0) = 1. The equations, in matrix form, can
be represented as (

y′
1

y′
2

)
=
(

2 3
4 1

)(
y1
y2

)
i.e. Y ′ = AY
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where A =
(

2 3
4 1

)
. The eigenvalues of the matrix A are λ1 = −2 and λ2 = 5.

Corresponding eigenvectors are X1 =
(

3
−4

)
and X1 =

(
1
1

)
respectively.

Thus, the general solutions are

Y (t) =
∑

i

aie
λitXi

⇒
(

y1(t)
y2(t)

)
= a1e

−2t

(
3

−4

)
+ a2e

5t

(
1
1

)
or, y1(t) = 3a1e

−2t + a2e
5t

and y2(t) = −4a1e
−2t + a2e

5t

Applying the initial conditions,

y1(0) = 3a1 + a2 = 2
y2(0) = −4a1 + a2 = 1

Solving these equations, we have a1 = 1 and a2 = −1. Hence, the exact solutions are

y1(t) = 3e−2t − e5t

y2(t) = −4e−2t − e5t
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