Lecture Notes: Matrices

Semester I Core Course I
University of Calcutta

Dr. P. Mandal

Department of Physics
St. Paul's Cathedral Mission College
July 19, 2019

Contents

1 Preliminary Topics 1
1.1 Definitions: Some Terminologies 1
1.2 Matrix Algebra 2
1.3 Special Square Matrices 8
1.4 Eigenvalue Problems 11
1.4.1 Corollaries 15
1.5 Cayley-Hamilton Theorem 18
1.6 Diagonalization of Matrices 20
1.6.1 Corollaries 21
1.7 Similarity Transformation 22
1.8 Unitary Transformation 22
1.9 Evaluating Power of a Matrix 23
1.10 Solutions of Linear Coupled First Order Ordinary Differential Equations 24

1

Preliminary Topics

Syllabus: (a) Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar and Unit Matrices. Transpose of a Matrix. Symmetric and Skew-Symmetric Matrices. Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and NonSingular matrices. Orthogonal and Unitary Matrices. Trace of a Matrix. Inner Product.
(b) Eigenvalues and Eigenvectors. Cayley-Hamiliton Theorem. Diagonalization of Matrices. Solutions of Coupled Linear Ordinary Differential Equations. Functions of a Matrix.

1.1 Definitions: Some Terminologies

1. Matrix: A matrix is an array of numbers which may be complex. The array contains $m \times n$ numbers in m rows and n columns. $m \times n$ is the order of the matrix.

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & \ldots & a_{m n}
\end{array}\right)
$$

The element which belongs to the i-th row and j-th column is denoted as $a_{i j}$.
2. Row matrix: A row matrix contains only one row i.e. the numbers are arrayed in a single row. The order of such matrix is thus $1 \times n$.

$$
R=\left(\begin{array}{lllll}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n}
\end{array}\right)
$$

3. Column matrix: A column matrix contains only one column i.e. the numbers are arrayed in a single column. The order of such matrix is thus $m \times 1$.

$$
C=\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\ldots \\
\ldots \\
a_{m 1}
\end{array}\right)
$$

4. Null matrix: If all the elements of a matrix are zero, it is called a null matrix i.e. for a null matrix $a_{i j}=0$ for all i, j.
5. Square matrix: If the number of rows (m) and the number of columns (n) of a matrix are equal, it is called a square matrix. The matrix S below is a square matrix of order 3 .

$$
S=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)
$$

The elements $a_{i i}$ are called the diagonal elements.
6. Diagonal matrix: If all the off-diagonal elements of a square matrix are zero but at least one diagonal element is non-zero, it is called a diagonal matrix i.e. for a diagonal matrix $a_{i j} \neq 0$ for all $i \neq j$ but $a_{i i}=0$ for at least one i.

$$
D=\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right)
$$

D is a diagonal matrix of order 3 .
7. Unit or Identity matrix: If all the diagonal elements of a diagonal matrix are equal to identity, it is called a unit or identity matrix. For a unit matrix $a_{i j}=0$ for all $i \neq j$ and $a_{i i}=1$ for all i i.e. $a_{i j}=\delta_{i j}$.
$I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ is a diagonal matrix of order 3.
8. Equal matrices: Two matrices of same order are said to be equal if the elements of one matrix are equal to the corresponding elements of other matrix i.e. matrices A and B are equal if $a_{i j}=b_{i j}$ for all i, j.

1.2 Matrix Algebra

1. Addition \& Subtraction: Addition or subtraction of two matrices A and B of same order is defined as $C=A \pm B$ where $c_{i j}=a_{i j} \pm b_{i j}$ for all i and j. For example,

$$
\begin{aligned}
& A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \text { and } B=\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right) \\
& \therefore A \pm B=\left(\begin{array}{lll}
a_{11} \pm b_{11} & a_{12} \pm b_{12} & a_{13} \pm b_{13} \\
a_{21} \pm b_{21} & a_{22} \pm b_{22} & a_{23} \pm b_{23}
\end{array}\right)
\end{aligned}
$$

Properties:

- Matrix addition is commutative i.e. $A+B=B+A$.
- Matrix addition is associative i.e. $A+(B+C)=(A+B)+C$

2. Multiplication:

(a) Multiplication by a scalar: Multiplying a matrix by a number or scalar (say k) means multiplying each element by the number i.e. $k A=A k=k\left(a_{i j}\right)$.
(b) Matrix product: The product of two matrices A and B is defined as $C=A B$, where

$$
c_{i j}=\sum_{k=1}^{s} a_{i k} b_{k j}
$$

For the product to be defined, matrices A and B must be conformable i.e. if $A=(a)_{i j}$ is an $m \times n$ matrix, then $B=(b)_{i j}$ must be an $n \times s$ matrix. The product matrix C is an $m \times s$ matrix. Consider, for example,

$$
A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22} \\
b_{31} & b_{32}
\end{array}\right)
$$

Therefore, by definition, the product matrix

$$
C=\left(\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21}+a_{13} b_{31} & a_{11} b_{12}+a_{12} b_{22}+a_{13} b_{32} \\
a_{21} b_{11}+a_{22} b_{21}+a_{23} b_{31} & a_{21} b_{12}+a_{22} b_{22}+a_{23} b_{32}
\end{array}\right)
$$

Consider the following system of equations:

$$
\begin{align*}
3 x-y+2 z & =-3 \\
2 x+3 y-z & =2 \tag{1.1}\\
x-2 y+z & =5
\end{align*}
$$

The set of equations can be written in matrix form as

$$
\left(\begin{array}{ccc}
3 & -1 & 2 \\
2 & 3 & -1 \\
1 & -2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-3 \\
2 \\
5
\end{array}\right)
$$

Properties:

- Matrix multiplication is, in general, not commutative i.e. $A B \neq B A$.
- Matrix multiplication is associative i.e. $A(B C)=(A B) C$
- Matrix multiplication follows the distributive law i.e. $A(B+C)=A B+$ $A C$.
(c) Direct product: The direct product is defined for general matrices. Given an $n \times n$ matrix A and an $m \times m$ matrix B , the direct product of A and B is an $n m \times n m$ matrix, and is defined by $C=A \otimes B$ where $C_{i k, j l}=a_{i j} b_{k l}$. If

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right) \\
C=A \otimes B=\left(\begin{array}{cc}
a_{11} B & a_{12} B \\
a_{21} B & a_{22} B
\end{array}\right)=\left(\begin{array}{llll}
a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} \\
a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} \\
a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} \\
a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22}
\end{array}\right)
\end{gathered}
$$

3. Commutator of matrices: Commutator of two square matrices A and B of same order is defined as $[A, B]=A B-B A$. In general, $A B \neq B A$ and hence $[A, B] \neq 0$. For example,

$$
A=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right) \text { and } B=\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)
$$

Note that

$$
A B=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
3 & 4 \\
4 & 6
\end{array}\right) \text { but } B A=\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 8
\end{array}\right)
$$

If the commutator $[A, B]=A B-B A=0$ i.e. $A B=B A$, the matrices are said to be commutative.

Properties:

- $[A, B]=-[B, A]$
- $[A, B+C]=[A, B]+[A, C]$
- $[A, B C]=[A, B] C+B[A, C]$
- $[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0$

The anticommutator of two matrices is defined as $\{A, B\}=A B+B A$.
4. Power of a matrix: For any positive integer n, the power of a square matrix A is defined as $A^{n}=A A \ldots A\left(n\right.$ times) i.e. $A^{2}=A A, A^{3}=A A A$. In particular, $A^{0}=I$, the unit matrix ${ }^{1}$.
5. Function of a matrix: The function of a matrix maps a matrix to another matrix. For example, consider a matrix function $f(A)=3 A^{2}-2 A+I$ where I is the unit matrix of same order. A more fancy example is $f(A)=\sum_{k} a_{k} A^{k}$, where a_{k} are scalar coefficients. Another common series is defined by

$$
e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}
$$

There are several techniques for lifting a real function to a square matrix function. If the real function $f(x)$ has the Taylor series expansion

$$
f(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2!}+\ldots
$$

then a matrix function $f(A)$ can be defined by substituting x by a matrix A i.e.

$$
f(A)=f(0) I+f^{\prime}(0) A+f^{\prime \prime}(0) \frac{A^{2}}{2!}+\ldots
$$

where the powers become matrix powers, the additions become matrix sums and the multiplications become scaling operations.

[^0]6. Transpose of a matrix: For any matrix A, the transpose matrix A^{T} is obtained by interchanging corresponding rows and columns of A, i.e. if $A=\left(a_{i j}\right), A^{T}=\left(a_{j i}\right)$. For example,
\[

A=\left($$
\begin{array}{ccc}
1 & 1 & -2 \\
3 & 0 & 1
\end{array}
$$\right) \Rightarrow A^{T}=\left($$
\begin{array}{cc}
1 & 3 \\
1 & 0 \\
-2 & 1
\end{array}
$$\right)
\]

Properties:

- $\left(A^{T}\right)^{T}=A$.
- $(A+B)^{T}=A^{T}+B^{T}$.
- $(A B)^{T}=B^{T} A^{T}$.

7. Complex Conjugate: For any matrix A, the complex conjugate matrix A^{*} is formed by taking the complex conjugate of each element of A, i.e. if $A=\left(a_{i j}\right)$, $A^{*}=\left(a_{i j}^{*}\right)$ for all i and j. For example,

$$
A=\left(\begin{array}{cc}
1 & 2+i \\
3-i & i
\end{array}\right) \Rightarrow A^{*}=\left(\begin{array}{cc}
1 & 2-i \\
3+i & -i
\end{array}\right)
$$

Obviously, $\left(A^{*}\right)^{*}=A$.
8. Hermitian Conjugate: For an arbitrary matrix A, the Hermitian conjugate matrix A^{\dagger} is obtained by taking the complex conjugate of the matrix, and then the transpose of the complex conjugate matrix i.e. if $A=\left(a_{i j}\right), A^{\dagger}=\left(a_{j i}^{*}\right)$ for all i and j. For example,

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
2+3 i & 4-3 i \\
4 i & 3
\end{array}\right) \\
\Rightarrow A^{\dagger} & =\left(\begin{array}{cc}
2-3 i & 4+3 i \\
-4 i & 3
\end{array}\right)^{T}=\left(\begin{array}{cc}
2-3 i & -4 i \\
4+3 i & 3
\end{array}\right)
\end{aligned}
$$

Properties:

- $\left(A^{\dagger}\right)^{\dagger}=A$.
- $(A+B)^{\dagger}=A^{\dagger}+B^{\dagger}$.
- $(A B)^{\dagger}=B^{\dagger} A^{\dagger}$.

9. Trace of a matrix: The trace of a square matrix is defined as the sum of its diagonal elements i.e. $\operatorname{Tr}(A)=\sum_{i} a_{i i}$. For example,

$$
A=\left(\begin{array}{ll}
2 & i \\
0 & 3
\end{array}\right) \Rightarrow \operatorname{Tr}(A)=2+3=5
$$

Properties:

- $\operatorname{Tr}(A)=\operatorname{Tr}\left(A^{T}\right)$.
- $\operatorname{Tr}(A+B)=\operatorname{Tr}(A)+\operatorname{Tr}(B)$.
- $\operatorname{Tr}(\mathrm{AB})=\operatorname{Tr}(\mathrm{BA})$.

10. Determinant of a matrix: The determinant of a square matrix A is defined as the determinant having same array as that of the matrix and is generally denoted as $|A|$ or $\operatorname{det}(A)$. For example, the determinant of the matrix $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$ is $|A|=\left|\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right|=5$. If the determinant of a matrix is zero i.e. $|A|=0, A$ is called a singular matrix.

Properties:

- $|A B|=|B A|=|A||B|$
- $\left|A^{T}\right|=|A|$

11. Cofactor matrix:

The cofactor matrix is defined as $A^{c}=A^{i j}$. For example,

$$
A=\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \Rightarrow A^{c}=\left(\begin{array}{ccc}
A^{11} & A^{12} & A^{13} \\
A^{21} & A^{22} & A^{23} \\
A^{31} & A^{32} & A^{33}
\end{array}\right)
$$

where

$$
\begin{array}{lll}
A^{11}=(-1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|, & A^{12}=(-1)^{1+2}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|, & A^{13}=(-1)^{1+3}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
A^{21}=(-1)^{2+1}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right|, & A^{22}=(-1)^{2+2}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|, & A^{23}=(-1)^{2+3}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| \\
A^{31}=(-1)^{3+1}\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right|, & A^{32}=(-1)^{3+2}\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right|, & A^{33}=(-1)^{3+3}\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\end{array}
$$

The cofactor matrix of $A=\left(\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right)$ is $A^{c}=\left(\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right)$

12. Adjoint of a matrix:

The adjoint of a matrix is defined as the transpose of its cofactor matrix i.e. $\operatorname{adj}(A)=A^{c T}$. For example, consider the matrix $A=\left(\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right)$. The cofactor matrix $A^{c}=\left(\begin{array}{ll}3 & 0 \\ 1 & 2\end{array}\right)$.
Hence, the adjoint matrix $\operatorname{adj}(A)=\left(\begin{array}{cc}3 & 0 \\ 1 & 2\end{array}\right)^{T}=\left(\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right)$.

13. Inverse of a matrix:

For a given nonsingular matrix A, there exists another matrix B such that $A B=$ $B A=I$. Matrix B is called the inverse matrix of $A\left(B=A^{-1}\right)$. For example, consider the following matrices:

$$
A=\left(\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right) \quad \& \quad B=\left(\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right)
$$

Note that,

$$
A B=\left(\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

Similarly,

$$
B A=\left(\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I
$$

$\therefore B=\left(\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right)=A^{-1}$, the inverse matrix of A.
The inverse matrix can be found by using the relation

$$
\begin{equation*}
A^{-1}=\frac{\operatorname{adj}(A)}{|A|} \tag{1.2}
\end{equation*}
$$

Problem 1: Find out the inverse matrix of $A=\left(\begin{array}{cc}2 & -1 \\ 0 & 3\end{array}\right)$.
Solution: Adjoint matrix of A i.e. $\operatorname{adj}(A)=\left(\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right)$. The determinant of the matrix i.e. $|A|=\left|\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right|=6$
$\therefore A^{-1}=\frac{1}{6}\left(\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right)$.

Properties:

- $\left(A^{-1}\right)^{-1}=A$.
- $(A+B)^{-1}=A^{-1}+B^{-1}$.
- $(A B)^{-1}=B^{-1} A^{-1}$.

14. Derivative of a matrix: The derivative of a matrix with respect to a variable say, x is equal to the derivative of each element with respect x separately. For example,

$$
\frac{d}{d x}\left(\begin{array}{ccc}
x & x^{2} & 1 \\
e^{x} & 0 & 2 x^{3}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 x & 0 \\
e^{x} & 0 & 6 x^{2}
\end{array}\right)
$$

15. Integral of a matrix: The integral of a matrix with respect to a variable say, x is equal to the integral of each element with respect x separately. For example,

$$
\int\left(\begin{array}{ccc}
x & 3 x^{2} & 1 \\
e^{x} & 0 & 2 x^{3}
\end{array}\right)=\left(\begin{array}{ccc}
\frac{x^{2}}{2} & x^{3} & x \\
e^{x} & c & \frac{x^{4}}{2}
\end{array}\right)+\left(\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
c_{4} & 0 & c_{5}
\end{array}\right)
$$

1.3 Special Square Matrices

1. Singular and non-singular matrices: If the determinant of a matrix is zero, it is called singular i.e. for a singular matrix $A,|A|=0$. Consider the following matrix for example:

$$
A=\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right)
$$

As seen, $|A|=-1+1=0$. Therefore, it is a singular matrix.
For a non-singular matrix, $|A| \neq 0$.
2. Symmetric and skew-symmetric matrices: A matrix is said to be symmetric if the transpose matrix is equal to the matrix itself i.e. for a symmetric matrix A, $A^{T}=A$. For example, consider the following matrix:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=A
$$

If $A^{T}=-A$, the matrix A is called anti-symmetric or skew-symmetric. For an example, consider the matrix below:

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=-A
$$

Problem 2: Diagonal elements of a skew-symmetric matrix are zero.
Solution: For a skew-symmetric matrix $A, A^{T}=-A$. In terms of the $i j$-th element, $a_{i j}=-a_{j i}$.
Now, for the diagonal elements $i=j$.
Therefore, $a_{i i}=-a_{i i}$ or, $a_{i i}=0$ for all i.

Problem 3: Any square matrix can be uniquely written as the sum of a symmetric matrix and a skew-symmetric matrix.
Solution: Let A is a square matrix.

$$
\begin{array}{r}
A=\frac{1}{2}\left(A+A^{T}\right)+\frac{1}{2}\left(A-A^{T}\right)=P+Q \\
\text { Now, } P^{T}=\frac{1}{2}\left(A+A^{T}\right)^{T}=\frac{1}{2}\left\{A^{T}+\left(A^{T}\right)^{T}\right\}=\frac{1}{2}\left(A^{T}+A\right)=P \\
Q^{T}=\frac{1}{2}\left(A-A^{T}\right)^{T}=\frac{1}{2}\left\{A^{T}-\left(A^{T}\right)^{T}\right\}=\frac{1}{2}\left(A^{T}-A\right)=-Q
\end{array}
$$

i.e. P is a symmetric matrix and Q is a skew-symmetric matrix. So any square matrix can be written as the sum of a symmetric matrix and a skew-symmetric matrix. To prove the representation unique, we assume $A=R+S$ where R is a symmetric matrix and S is a skew-symmetric matrix i.e. $R^{T}=R$ and $S^{T}=-S$.

$$
\begin{array}{r}
A^{T}=R^{T}+S^{T}=R-S \\
\Rightarrow R=\frac{1}{2}\left(A+A^{T}\right), S=\frac{1}{2}\left(A-A^{T}\right)
\end{array}
$$

3. Hermitian and skew-Hermitian matrices: A matrix is said to be Hermitian if the Hermitian conjugate matrix is equal to the matrix itself i.e. for a Hermitian matrix $H, H^{\dagger}=H$. For example, consider the following matrix:

$$
\begin{aligned}
H & =\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \\
\Rightarrow H^{\dagger} & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)^{T}=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)=H
\end{aligned}
$$

If $H^{\dagger}=-H$, the matrix H is called anti-Hermitian or skew-Hermitian. For an example, consider the matrix below:

$$
\begin{aligned}
H & =\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \\
\Rightarrow H^{\dagger} & =\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)^{T}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)=-H
\end{aligned}
$$

Problem 4: For an arbitrary matrix A, show that $A+A^{\dagger}$ and $i\left(A-A^{\dagger}\right)$ are both Hermitian.
Solution: A matrix H is Hermitian if $H^{\dagger}=H$. Now,

$$
\begin{aligned}
\left(A+A^{\dagger}\right)^{\dagger} & =A^{\dagger}+\left(A^{\dagger}\right)^{\dagger} \\
& =A^{\dagger}+A
\end{aligned}
$$

Therefore, $A+A^{\dagger}$ is Hermitian. Similarly,

$$
\begin{aligned}
{\left[i\left(A-A^{\dagger}\right)\right]^{\dagger} } & =-i\left[A^{\dagger}+\left(A^{\dagger}\right)^{\dagger}\right] \\
& =-i\left(A^{\dagger}-A\right) \\
& =i\left(A-A^{\dagger}\right)
\end{aligned}
$$

Therefore, $i\left(A-A^{\dagger}\right)$ is also Hermitian.
4. Orthogonal matrix: For a unitary matrix $O, O O^{T}=O^{T} O=I$, the identity matrix. Consider the following example.

$$
\begin{aligned}
O & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \Rightarrow O^{T}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\therefore O O^{T} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I=O^{T} O
\end{aligned}
$$

So, O is a unitary matrix.

Problem 5: Show that the determinant of an orthogonal matrix is ± 1.

Solution: For an orthogonal matrix $O, O O^{T}=O^{T} O=I$, the identity matrix. Now,

$$
\begin{aligned}
\left|O O^{T}\right| & =|I|=1 \\
\Rightarrow|O|\left|O^{T}\right| & =1 \\
\Rightarrow|O|^{2} & =1 \quad\left(\because\left|O^{T}\right|=|O|\right) \\
\Rightarrow|O| & = \pm 1 .
\end{aligned}
$$

Problem 6: Show that the inverse of an orthogonal matrix is equal to its transpose i.e. $O^{-1}=O^{T}$.

Solution: For an orthogonal matrix $O, O O^{T}=O^{T} O=I$. Since $|O|= \pm 1$, the inverse matrix O^{-1} exists. Now,

$$
\begin{aligned}
O^{-1} O O^{T} & =O^{-1} I \\
\Rightarrow O^{-1} & =O^{T} \quad\left(\because O^{-1} O=I\right)
\end{aligned}
$$

5. Unitary matrix: For a unitary matrix $U, U U^{\dagger}=U^{\dagger} U=I$, the identity matrix.

Consider the following example.

$$
\begin{aligned}
U & =\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \Rightarrow U^{\dagger}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) \\
\therefore U U^{\dagger} & =\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I=U^{\dagger} U
\end{aligned}
$$

Hence, U is a unitary matrix.

Problem 7: Show that the inverse of a unitary matrix is equal to its Hermitian conjugate i.e. $U^{-1}=U^{\dagger}$.
Solution: For a unitary matrix $U, U U^{\dagger}=U^{\dagger} U=I$. If U^{-1} is the inverse matrix of $U, U^{-1} U=I$. Now,

$$
\begin{aligned}
U^{-1} U U^{\dagger} & =U^{-1} I \\
\Rightarrow U^{-1} & =U^{\dagger}
\end{aligned}
$$

6. Self-adjoint matrix: If the transpose of the cofactor matrix i.e. the adjoint of any arbitrary matrix is equal to the matrix itself, it is called a self-adjoint matrix i.e. for a self-adjoint matrix $\operatorname{adj}(A)=A$. For example,

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \Rightarrow A^{c}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \\
\operatorname{adj}(A) & =\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)^{T}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=A
\end{aligned}
$$

1.4 Eigenvalue Problems

Every square matrix A satisfies a relation

$$
\begin{equation*}
A X=\lambda X \tag{1.3}
\end{equation*}
$$

where λ is a scalar (real or complex) and X is a column matrix. Eq. (1.3) is called the eigenvalue equation of matrix A with eigenvalue λ and eigenvector X. If A is a square matrix of order n, X is a column matrix of order $n \times 1$.

From eq. (1.3), $(A X-\lambda I) X=0$. In terms of the elements of the matrices A and X,

$$
\begin{align*}
& \left(\begin{array}{ccccc}
a_{11}-\lambda & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}-\lambda
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
\ldots \\
x_{n}
\end{array}\right)=0 \tag{1.4}\\
& \Rightarrow\left(a_{11}-\lambda\right) x_{1}+a_{12} x_{2}+\ldots . .+a_{1 n} x_{n}=0 \\
& a_{21} x_{1}+\left(a_{22}-\lambda\right) x_{2}+\ldots \ldots+a_{2 n} x_{n}=0 \\
& \text {.. }=0 \\
& \text {.. }=0 \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots \ldots+\left(a_{n n}-\lambda\right) x_{n}=0
\end{align*}
$$

Thus we have a set of n number of linear homogeneous equations. Non-trivial solution exists if the determinant of the coefficients vanishes, i.e.

$$
\begin{align*}
D(\lambda) & =\left|\begin{array}{ccccc}
a_{11}-\lambda & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}-\lambda
\end{array}\right|=0 \\
\Rightarrow|A-\lambda I| & =0 \tag{1.5}
\end{align*}
$$

$D(\lambda)$ is a polynomial of degree n. It is called the characteristics polynomial of the given matrix A.
$D(\lambda)=|A-\lambda I|=0$ (eq. 1.5) is the characteristic equation of the matrix A. The equation has n roots i.e. n number of possible values of λ - say $\lambda_{1}, \lambda_{2}, \ldots$, λ_{n} (some of them may be equal). Thus we conclude that a matrix of order n has n number of eigenvalues.

The polynomial $D(\lambda)$ of degree n can be expressed as

$$
\begin{equation*}
D(\lambda)=|A-\lambda I|=c_{0}+c_{1} \lambda+c_{2} \lambda^{2}+\ldots . .+c_{n-1} \lambda^{n-1}+c_{n} \lambda^{n} \tag{1.6}
\end{equation*}
$$

which implies that $c_{0}=|A|$.
As $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the roots of the characteristic equation (eq. 1.5),

$$
\begin{equation*}
D(\lambda)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots . .\left(\lambda_{n}-\lambda\right) \tag{1.7}
\end{equation*}
$$

By speculation of eq. 1.6 and eq. 1.7

$$
\begin{equation*}
\lambda_{1} \lambda_{2} \ldots \lambda_{n}=c_{0}=|A| \tag{1.8}
\end{equation*}
$$

Thus the product of the eigenvalues of a matrix is equal to its determinant.
Similary, by inspection of eq. 1.6 and eq. 1.7 (equating the coefficients of λ^{n-1}) we find

$$
\begin{align*}
c_{n-1}=(-1)^{n-1}\left(a_{11}+a_{22}+\ldots .+a_{n n}\right) & =(-1)^{n-1}\left(\lambda_{1}+\lambda_{2}+\ldots .+\lambda_{n}\right) \\
\Rightarrow \lambda_{1}+\lambda_{2}+\ldots .+\lambda_{n} & =a_{11}+a_{22}+\ldots .+a_{n n}=\operatorname{Tr}(A) \tag{1.9}
\end{align*}
$$

Thus the sum of the eigenvalues is equal to the trace of the matrix.
Problem 8: Find the trace and determinant of the matrix $A=\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$ and hence determine its eigenvalues.

Solution: The trace of the matrix is the sum of its diagonal elements i.e. $\operatorname{Tr}(A)=$ $2-2=0$.

The determinant of the matrix is

$$
|A|=\left|\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right|=-4+3=-1
$$

If λ_{1} and λ_{2} are the eigenvalues of the matrix, by eq. 1.8 and eq. 1.9 we have

$$
\begin{aligned}
\lambda_{1}+\lambda_{2} & =\operatorname{Tr}(A)=0 \\
\lambda_{1} \lambda_{2} & =|A|=-1
\end{aligned}
$$

Solving these equations, we find the eigenvalues as $\lambda_{1}=-1, \lambda_{2}=1$.
How to determine the eigenvalues and the normalized eigenvectors of a matrix? Let us understand with the following examples.

Example 1: $A=\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$
The eigenvalue equation of the matrix is $A X=\lambda X$ or, $(A-\lambda I) X=0$ where λ is the eigenvalue and X is the corresponding eigenvector. The characteristic equation is $|A-\lambda I|=0$ i.e.

$$
\begin{aligned}
\left|\begin{array}{cc}
2-\lambda & -1 \\
3 & -2-\lambda
\end{array}\right| & =0 \\
\Rightarrow(2-\lambda)(2+\lambda)+3 & =0 \\
\Rightarrow \lambda^{2} & =1 \\
\text { or, } \lambda & = \pm 1
\end{aligned}
$$

Thus the eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=1$.

Let, X_{1} is the eigenvector of A which corresponds to the eigenvalue $\lambda_{1}=-1$. From the eigenvalue equation $A X_{1}=\lambda_{1} X_{1}$, we have

$$
\begin{aligned}
\left(A-\lambda_{1} I\right) X_{1} & =0 \\
\Rightarrow\left(\begin{array}{cc}
3 & -1 \\
3 & -1
\end{array}\right)\binom{x_{1}}{x_{2}} & =0 \\
\Rightarrow 3 x_{1}-x_{2} & =0 \\
\text { or, } x_{2} & =3 x_{1}
\end{aligned}
$$

If $x_{1}=a, x_{2}=3 a$ where a is an arbitrary number $(\neq 0)$. The eigenvector of the given matrix corresponding to the eigenvalue $\lambda_{1}=-1$ is $X_{1}=\binom{a}{3 a}$. In normalized form, $X_{1 n}=\frac{1}{\sqrt{10}}\binom{1}{3}$.

Similarly, let us consider X_{2} as the eigenvector of A corresponding to the eigenvalue $\lambda_{2}=1$. From the eigenvalue equation $A X_{2}=\lambda_{2} X_{2}$, we have

$$
\begin{aligned}
\left(A-\lambda_{2} I\right) X_{2} & =0 \\
\Rightarrow\left(\begin{array}{ll}
1 & -1 \\
3 & -3
\end{array}\right)\binom{x_{1}}{x_{2}} & =0 \\
\Rightarrow x_{1}-x_{2} & =0 \\
\text { or, } x_{1} & =x_{2}
\end{aligned}
$$

If $x_{1}=b, x_{2}=b$ where b is another arbitrary number $(\neq 0)$. Therefore, the eigenvector of the given matrix corresponding to the eigenvalue $\lambda_{2}=1$ is $X_{2}=\binom{b}{b}$. In normalized form, $X_{2 n}=\frac{1}{\sqrt{2}}\binom{1}{1}$.

Example 2: $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
The eigenvalue equation of the matrix is $A X=\lambda X$ or, $(A-\lambda I) X=0$ where λ is the eigenvalue and X is the corresponding eigenvector. The characteristic equation is $|A-\lambda I|=0$ i.e.

$$
\begin{aligned}
\left|\begin{array}{cc}
-\lambda & 0 \\
1 & -\lambda
\end{array}\right| & =0 \\
\Rightarrow \lambda^{2}+1 & =0 \\
\text { or, } \lambda & = \pm i
\end{aligned}
$$

Thus the eigenvalues are $\lambda_{1}=-i$ and $\lambda_{2}=i$.
Let, X_{1} is the eigenvector of A which corresponds to the eigenvalue $\lambda_{1}=-i$. From the eigenvalue equation $A X_{1}=\lambda_{1} X_{1}$, we have

$$
\begin{aligned}
\left(A-\lambda_{1} I\right) X_{1} & =0 \\
\Rightarrow\left(\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right)\binom{x_{1}}{x_{2}} & =0 \\
\Rightarrow i x_{1}-x_{2} & =0 \\
\text { or, } x_{2} & =i x_{1}
\end{aligned}
$$

If $x_{1}=a, x_{2}=i a$ where a is an arbitrary number $(\neq 0)$. The eigenvector of the given matrix corresponding to the eigenvalue $\lambda_{1}=-1$ is $X_{1}=\binom{a}{i a}$. In normalized form, $X_{1 n}=\frac{1}{\sqrt{2}}\binom{1}{i}$.

Similarly, let us consider X_{2} as the eigenvector of A corresponding to the eigenvalue $\lambda_{2}=i$. From the eigenvalue equation $A X_{2}=\lambda_{2} X_{2}$, we have

$$
\begin{aligned}
\left(A-\lambda_{2} I\right) X_{2} & =0 \\
\Rightarrow\left(\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right)\binom{x_{1}}{x_{2}} & =0 \\
\Rightarrow x_{1}-i x_{2} & =0 \\
\text { or, } x_{1} & =i x_{2}
\end{aligned}
$$

If $x_{2}=b, x_{1}=i b$ where b is another arbitrary number $(\neq 0)$. Therefore, the eigenvector of the given matrix corresponding to the eigenvalue $\lambda_{2}=i$ is $X_{2}=\binom{i b}{b}$. In normalized form, $X_{2 n}=\frac{1}{\sqrt{2}}\binom{i}{1}$.

Example 3: $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 2 & 0\end{array}\right)$
The eigenvalue equation of the matrix is $A X=\lambda X$ or, $(A-\lambda I) X=0$ where λ is the eigenvalue and X is the corresponding eigenvector. The characteristic equation is $|A-\lambda I|=0$ i.e.

$$
\begin{aligned}
\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & -\lambda & 2 \\
0 & 2 & -\lambda
\end{array}\right| & =0 \\
\Rightarrow(1-\lambda)\left(\lambda^{2}-4\right) & =0 \\
\text { or, } \lambda & =1, \pm 2
\end{aligned}
$$

Thus the eigenvalues are $\lambda_{1}=-2, \lambda_{2}=1$ and $\lambda_{3}=2$.
Let, X_{1} is the eigenvector of A which corresponds to the eigenvalue $\lambda_{1}=-2$. From the eigenvalue equation $A X_{1}=\lambda_{1} X_{1}$, we have

$$
\begin{aligned}
\left(A-\lambda_{1} I\right) X_{1} & =0 \\
\Rightarrow\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =0 \\
\Rightarrow 3 x_{1} & =0 \quad \& \quad x_{2}+x_{3}=0 \\
\text { or, } x_{1} & =0 \quad \& \quad x_{2}=-x_{3}
\end{aligned}
$$

If $x_{3}=a, x_{2}=-a$ where a is an arbitrary number $(\neq 0)$. The eigenvector of the given matrix corresponding to the eigenvalue $\lambda_{1}=-2$ is $X_{1}=\left(\begin{array}{c}0 \\ -a \\ a\end{array}\right)$. In normalized form,
$X_{1 n}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$.
Similarly, let us consider X_{2} as the eigenvector of A corresponding to the eigenvalue $\lambda_{2}=1$. From the eigenvalue equation $A X_{2}=\lambda_{2} X_{2}$, we have

$$
\begin{aligned}
\left(A-\lambda_{2} I\right) X_{2} & =0 \\
\Rightarrow\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 2 \\
0 & 2 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =0 \\
\Rightarrow-x_{2}+2 x_{3} & =0 \quad \& \quad 2 x_{2}-x_{3}=0 \\
\text { or, } x_{2}=x_{3} & =0
\end{aligned}
$$

Let $x_{1}=b$, an arbitrary number $(\neq 0)$. The eigenvector of the given matrix corresponding to the eigenvalue $\lambda_{2}=1$ is $X_{2}=\left(\begin{array}{l}b \\ 0 \\ 0\end{array}\right)$. In normalized form, $X_{2 n}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

If X_{3} is the eigenvector of A corresponding to the eigenvalue $\lambda_{3}=2$, from the eigenvalue equation $A X_{3}=\lambda_{3} X_{3}$ we have

$$
\begin{aligned}
\left(A-\lambda_{3} I\right) X_{3} & =0 \\
\Rightarrow\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -2 & 2 \\
0 & 2 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & =0 \\
\Rightarrow x_{1} & =0 \quad \& \quad x_{2}=x_{3}
\end{aligned}
$$

Let $x_{2}=x_{3}=c$, where c is an arbitrary number $(\neq 0)$. The eigenvector of the given matrix corresponding to the eigenvalue $\lambda_{3}=2$ is $X_{3}=\left(\begin{array}{l}0 \\ c \\ c\end{array}\right)$. In normalized form, $X_{3 n}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$.

1.4.1 Corollaries

1. Eigenvalues of a diagonal matrix are equal to its diagonal elements.

Proof: Consider a diagonal matrix of order n :

$$
\left(\begin{array}{ccccc}
a_{11} & 0 & \ldots & \ldots & 0 \\
0 & a_{22} & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \ldots & a_{n n}
\end{array}\right)
$$

The characteristic equation of the matrix is

$$
\begin{aligned}
\Rightarrow\left|\begin{array}{ccccc}
a_{11}-\lambda & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}-\lambda
\end{array}\right| & =0 \\
\Rightarrow\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \ldots\left(a_{n n}-\lambda\right) & =0
\end{aligned}
$$

i.e. $\lambda=a_{11}, a_{22}, \ldots, a_{n n}$, the diagonal elements of the matrix.
2. At least one eigenvalue of a singular matrix is zero.

Proof: Consider a singular matrix A i.e. $|A|=0$.
If $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots$ are the eigenvalues of the matrix A, the product of the eigenvalues must be equal to the determinant of A (eq. 1.8) i.e.

$$
\lambda_{1} \cdot \lambda_{2} \cdot \lambda_{3} \ldots=|A|=0
$$

Therefore, at least one of the eigenvalues must be zero.
3. If λ is the eigenvalue of a non-singular matrix A, the eigenvalue of A^{-1} is $1 / \lambda$ corresponding to a given eigenvector.
Proof: Let λ and λ^{\prime} are respectively the eigenvalues of a non-singular matrix A and its inverse matrix A^{-1} corresponding to the same eigenvector X. The eigenvalue equations are

$$
\begin{aligned}
A X & =\lambda X \\
A^{-1} X & =\lambda^{\prime} X
\end{aligned}
$$

Now multiplying the first equation by A^{-1} from left

$$
\begin{aligned}
A^{-1} A X & =\lambda A^{-1} X \\
\Rightarrow X & =\lambda \lambda^{\prime} X \\
\text { or, }\left(1-\lambda \lambda^{\prime}\right) X & =0
\end{aligned}
$$

Since X is the eigenvector $(X \neq 0), \lambda^{\prime}=1 / \lambda$ i.e. the eigenvalues of the inverse matrix are the reciprocal of the eigenvalues of the original matrix.
4. Eigenvalues of a unitary matrix are of unit magnitude.

Proof: Consider a unitary matrix U having an eigenvalue λ corresponding to an eigenvector X. The eigenvalue equation is

$$
\begin{equation*}
U X=\lambda X \tag{1.10}
\end{equation*}
$$

Taking the Hermitian conjugate of eq. 1.10

$$
\begin{align*}
(U X)^{\dagger} & =(\lambda X)^{\dagger} \\
\Rightarrow X^{\dagger} U^{\dagger} & =\lambda^{*} X^{\dagger} \tag{1.11}
\end{align*}
$$

Multiplying eq. (1.11) by eq. (1.10) from left

$$
\begin{aligned}
X^{\dagger} U^{\dagger} U X & =\lambda^{*} \lambda X^{\dagger} X \\
\Rightarrow X^{\dagger} X & =\lambda^{*} \lambda X^{\dagger} X \quad\left(\because U \text { is unitary, } U^{\dagger} U=I\right) \\
\text { or, }\left(1-|\lambda|^{2}\right) X^{\dagger} X & =0 \\
\Rightarrow 1-|\lambda|^{2} & =0 \quad\left(\because X^{\dagger} X \neq 0\right) \\
\Rightarrow|\lambda|^{2} & =1
\end{aligned}
$$

5. The eigenvalues of a Hermitian matrix are real and the eigenvectors corresponding to different eigenvalues are orthogonal.
Proof: Let us consider a Hermitian matrix H having an eigenvalue λ corresponding to an eigenvector X. The eigenvalue equation is

$$
\begin{equation*}
H X=\lambda X \tag{1.12}
\end{equation*}
$$

Multiplying eq.(1.12) by X^{\dagger} from left

$$
\begin{equation*}
X^{\dagger} H X=\lambda X^{\dagger} X \tag{1.13}
\end{equation*}
$$

Taking the hermitian conjugation of eq. (1.12),

$$
\begin{align*}
(H X)^{\dagger} & =(\lambda X)^{\dagger} \\
\Rightarrow X^{\dagger} H^{\dagger} & =\lambda^{*} X^{\dagger} \\
\text { or, } X^{\dagger} H & =\lambda^{*} X^{\dagger} \quad\left(\because H \text { is Hermitian, } H^{\dagger}=H\right) \tag{1.14}
\end{align*}
$$

Multiplying eq.(1.14) by X from right

$$
\begin{equation*}
X^{\dagger} H X=\lambda^{*} X^{\dagger} X \tag{1.15}
\end{equation*}
$$

Comparing eq.(1.13) and eq.(1.15),

$$
\begin{aligned}
\lambda X^{\dagger} X & =\lambda^{*} X^{\dagger} X \\
\Rightarrow\left(\lambda-\lambda^{*}\right) X^{\dagger} X & =0 \\
\Rightarrow \lambda^{*} & =\lambda \quad\left(\because X^{\dagger} X \neq 0\right)
\end{aligned}
$$

Thus the eigenvalues of a Hermitian matrix are real.
Now consider two distinct eigenvalues λ_{1} and λ_{2} of the Hermitian matrix H corresponding to the eigenvectors X_{1} and X_{2} respectively. $\lambda_{1}^{*}=\lambda_{1}, \lambda_{2}^{*}=\lambda_{2}$ and $\lambda_{1} \neq \lambda_{2}$. The eigenvalue equations are

$$
\begin{align*}
H X_{1} & =\lambda_{1} X_{1} \tag{1.16}\\
H X_{2} & =\lambda_{2} X_{2} \tag{1.17}
\end{align*}
$$

Taking the hermitian conjugation of eq. (1.17),

$$
\begin{align*}
\left(H X_{2}\right)^{\dagger} & =\left(\lambda X_{2}\right)^{\dagger} \\
\Rightarrow X_{2}^{\dagger} H & =\lambda_{2} X_{2}^{\dagger} \quad\left(\because H^{\dagger}=H \& \lambda_{2}^{*}=\lambda_{2}\right) \tag{1.18}
\end{align*}
$$

Multiplying eq.(1.18) by X_{1} from right

$$
\begin{equation*}
X_{2}^{\dagger} H X_{1}=\lambda_{2} X_{2}^{\dagger} X_{1} \tag{1.19}
\end{equation*}
$$

Multiplying eq.(1.16) by X_{2}^{\dagger} from left

$$
\begin{equation*}
X_{2}^{\dagger} H X_{1}=\lambda_{1} X_{2}^{\dagger} X_{1} \tag{1.20}
\end{equation*}
$$

Comparing eq. 1.19 and eq. 1.20,

$$
\begin{aligned}
\lambda_{1} X_{2}^{\dagger} X_{1} & =\lambda_{2} X_{2}^{\dagger} X_{1} \\
\Rightarrow\left(\lambda_{1}-\lambda_{2}\right) X_{2}^{\dagger} X_{1} & =0 \\
\Rightarrow X_{2}^{\dagger} X_{1} & =0 \quad\left(\because \lambda_{2} \neq \lambda_{1}\right)
\end{aligned}
$$

Thus X_{1} and X_{2} are orthogonal.
6. If two matrices commute, they will have simultaneous eigenfunction.

Proof: Let two matrices A and B commute i.e. $A B=B A$.
If X is an eigenvector of A and λ is the associated eigenvalue, $A X=\lambda X$.
Multiplying by B from left,

$$
\begin{aligned}
B A X & =\lambda B X \\
\text { or, } A B X & =\lambda B X \quad(\because A B=B A) \\
\Rightarrow A(B X) & =\lambda(B X)
\end{aligned}
$$

Thus $B X$ is another eigenfunction of A for the same eigenvalue $\lambda . B X$ is therefore, a scalar multiple of X i.e.

$$
\begin{equation*}
B X=\mu X \tag{1.21}
\end{equation*}
$$

This is the eigenvalue equation of matrix B with eigenvalue μ and associated eigenfunction X. Thus X is the simultaneous eigenfunction for the matrices A and B.

1.5 Cayley-Hamilton Theorem

Cayley-Hamilton theorem states that every square matrix satisfies its own characteristic equation. Let us consider a matrix A of order n. If λ is the eigenvalue of A, the characteristic equation is $D(\lambda)=|A-\lambda I|=0$. We rewrite eq. 1.6 as

$$
\begin{equation*}
D(\lambda)=c_{0}+c_{1} \lambda+c_{2} \lambda^{2}+\ldots . .+c_{n} \lambda^{n}=\sum_{i=0}^{n} c_{i} \lambda^{i} \tag{1.22}
\end{equation*}
$$

is a polynomial of order n. The Cayley-Hamilton theorem states that substituting the matrix A for λ in this polynomial (eq. 1.22) results in the null matrix i.e.

$$
\begin{equation*}
D(A)=\sum_{i=0}^{n} c_{i} A^{i}=0 \tag{1.23}
\end{equation*}
$$

The theorem can be verified with the following example.
Consider a matrix $A=\left(\begin{array}{cc}2 & -1 \\ 3 & -2\end{array}\right)$. The characteristic equation of the matrix is

$$
\begin{align*}
D(\lambda) & =\left|\begin{array}{cc}
2-\lambda & -1 \\
3 & -2-\lambda
\end{array}\right|=0 \\
\Rightarrow D(\lambda) & =\lambda^{2}-1=0 \tag{1.24}
\end{align*}
$$

By Cayley-Hamilton theorem, the characteristic eq. 1.24 will be satisfied by the matrix A i.e. $D(A)=A^{2}-I=0$ or, $A^{2}=I$. Now,

$$
A^{2}=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right)\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I \text { (q.e.d.) }
$$

Cayley-Hamilton theorem is often used to determine the inverse of a matrix. Given the characteristic equation (eq. 1.22) of a matrix A, Cayley-Hamilton theorem implies

$$
\begin{equation*}
D(A)=\sum_{i=0}^{n} c_{i} A^{i}=c_{0} I+c_{1} A+c_{2} A^{2}+\ldots . .+c_{n} A^{n}=0 \tag{1.25}
\end{equation*}
$$

Multiplying eq. 1.25 by A^{-1},

$$
\begin{array}{r}
c_{0} I A^{-1}+c_{1} A A^{-1}+c_{2} A^{2} A^{-1}+\ldots .+c_{n} A^{n} A^{-1}=0 \\
\text { or, } c_{0} A^{-1}+c_{1} I+c_{2} A+\ldots . .+c_{n} A^{n-1}=0 \\
\text { or, } c_{0} A^{-1}=-\left(c_{1} I+c_{2} A+\ldots .+c_{n} A^{n-1}\right) \\
\Rightarrow A^{-1}=-\frac{1}{c_{0}}\left(c_{1} I+c_{2} A+\ldots . .+c_{n} A^{n-1}\right)=-\frac{1}{c_{0}} \sum_{i=1}^{n} c_{i} A^{i-1}
\end{array}
$$

Problem 9: Determine the inverse of the matrix $A=\left(\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right)$ by using the Cayley-Hamilton theorem.

Solution: The characteristic equation of the matrix is

$$
\begin{align*}
\left|\begin{array}{ccc}
2-\lambda & 0 & 1 \\
1 & 1-\lambda & 2 \\
0 & 1 & 1-\lambda
\end{array}\right|=0 \\
\Rightarrow(2-\lambda)\left\{(1-\lambda)^{2}-2\right\}+1=0 \\
\Rightarrow \lambda^{3}-4 \lambda^{2}+3 \lambda+1=0 \tag{1.26}
\end{align*}
$$

By Cayley-Hamilton theorem, eq. 1.26 will be satisfied by the matrix A itself i.e.

$$
\begin{equation*}
A^{3}-4 A^{2}+3 A+I=0 \tag{1.27}
\end{equation*}
$$

Multiplying eq. 1.27 by A^{-1},

$$
\begin{array}{r}
A^{3} A^{-1}-4 A^{2} A^{-1}+3 A A^{-1}+I A^{-1}=0 \\
\Rightarrow A^{-1}=-\left(A^{2}-4 A+3 I\right)
\end{array}
$$

Now, $A^{2}=\left(\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right)=\left(\begin{array}{lll}4 & 1 & 3 \\ 3 & 3 & 5 \\ 1 & 2 & 3\end{array}\right)$
$\therefore A^{-1}=-A^{2}+4 A-3 I=-\left(\begin{array}{lll}4 & 1 & 3 \\ 3 & 3 & 5 \\ 1 & 2 & 3\end{array}\right)+4\left(\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right)-3\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$
$=\left(\begin{array}{ccc}1 & -1 & 1 \\ 1 & 2 & 3 \\ -1 & 2 & 2\end{array}\right)$

1.6 Diagonalization of Matrices

A diagonal matrix corresponding to a square matrix is a matrix of same order having its diagonal elements as the eigenvalues of the original matrix and all other elements are zero. For example, consider

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right)
$$

and the eigenvalues of A are $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$. Therefore, the diagonal matrix of A is

$$
D=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & \ldots & \ldots & 0 \\
0 & \lambda_{2} & \ldots & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \ldots & \lambda_{n}
\end{array}\right)
$$

If A has n number of linearly independent eigenvectors, a matrix S can be found such that $S^{-1} A S=D$, the diagonal matrix. The matrix S is called the diagonalizing matrix.

Let, $X_{1}, X_{2}, \ldots X_{n}$ are the linearly independent eigenvectors of A. Thus the diagonalizing matrix

$$
S=\left(X_{1} X_{2} \ldots X_{n}\right)=\left(\begin{array}{ccccc}
x_{11} & x_{12} & \ldots & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & \ldots & x_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
x_{n 1} & x_{n 2} & \ldots & \ldots & x_{n n}
\end{array}\right)
$$

where we denote the eigenvectors X_{i} by the column matrices having elements $x_{1 i}, x_{2 i}, \ldots$, $x_{n i}$.

Note that the diagonalizing matrix S is not unique as we could arrange the eigenvectors $X_{1}, X_{2}, \ldots X_{n}$ in any order to construct it. The following steps may be followed to diagonalize a matrix:

- Find the eigenvalues of original matrix.
- Find out corresponding eigenvectors. The eigenvectors must be linearly independent. Otherwise, the matrix will not be diagonalizable.
- Construct the diagonalizing matrix S with its column elements as the linearly independent eigenvectors.
- Determine the inverse matrix S^{-1}.
- The matrix $D=S^{-1} A S$ is the diagonal matrix with $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ as its successive diagonal elements, where λ_{i} is the eigenvalue corresponding to the eigenvector X_{i}.

Problem 10: Diagonalize the matrix

$$
A=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right)
$$

Solution: Note that the eigenvalues of A are $\lambda_{1}=-1, \lambda_{2}=1$. Corresponding eigenvectors are $X_{1}=\binom{1}{3}$ and $X_{2}=\binom{1}{1}$ respectively. The eigenvectors are linearly independent ${ }^{2}$.

Thus the diagonalizing matrix $S=\left(\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right)$
The inverse matrix $S^{-1}=-\frac{1}{2}\left(\begin{array}{cc}1 & -1 \\ -3 & 1\end{array}\right)$
Therefore, the diagonal matrix

$$
D=S^{-1} A S=-\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-3 & 1
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
3 & -2
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

1.6.1 Corollaries

1. Diagonalizing matrix of a real symmetric matrix is orthogonal.

Proof: Let us consider a symmetric matrix A i.e. $A^{T}=A$. If λ_{i} are the eigenvalues of A and S is the diagonalizing matrix,

$$
\begin{aligned}
S^{-1} A S & =D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}\right) \\
\Rightarrow\left(S^{-1} A S\right)^{T} & =D^{T} \\
\Rightarrow S^{T} A^{T}\left(S^{-1}\right)^{T} & =D \\
\Rightarrow S^{T} A\left(S^{-1}\right)^{T} & =S^{-1} A S \\
\Rightarrow S^{T} & =S^{-1} \\
\Rightarrow S^{T} S & =I
\end{aligned}
$$

i.e. S is an orthogonal matrix.

[^1]2. Diagonalizing matrix of a Hermitian matrix is unitary.

Proof: Let us consider a Hermitian matrix H i.e. $H^{\dagger}=H$. If D is the diagonal matrix and S is the corresponding diagonalizing matrix,

$$
\begin{aligned}
S^{-1} H S & =D \\
\Rightarrow\left(S^{-1} H S\right)^{\dagger} & =D^{\dagger} \\
\Rightarrow S^{\dagger} H^{\dagger}\left(S^{-1}\right)^{\dagger} & =D \\
\Rightarrow S^{\dagger} H\left(S^{-1}\right)^{\dagger} & =S^{-1} H S \\
\Rightarrow S^{\dagger} & =S^{-1} \\
\Rightarrow S^{\dagger} S & =I
\end{aligned}
$$

i.e. S is unitary.

1.7 Similarity Transformation

Consider a square matrix A of order n and a non-singular matrix S such that $S^{-1} A S=B$, another square matrix of same order as A. Matrix B is similar to A and the transformation from A to B through the relation $S^{-1} A S=B$ is called similarity transformation. Diagonalization is a special type of similarity transformation.

Problem 11: Eigenvalues of a matrix remain invariant under similarity transformation

Solution: Consider a similarity transformation $S^{-1} A S=B$. If λ is the eigenvalue of B, the characteristic equation is $|B-\lambda I|=0$ i.e.

$$
\begin{aligned}
\left|S^{-1} A S-\lambda I\right| & =0 \\
\Rightarrow\left|S^{-1} A S-S^{-1} \lambda I S\right| & =0 \\
\Rightarrow\left|S^{-1}(A-\lambda I) S\right| & =0 \\
\Rightarrow\left|S^{-1}\right||A-\lambda I||S| & =0 \\
\Rightarrow\left|S^{-1} S\right||A-\lambda I| & =0 \\
\Rightarrow|A-\lambda I| & =0
\end{aligned}
$$

which is the characteristic equation of the original matrix A with same eigenvalue λ. Thus the eigenvalues remain invariant under similarity transformation.

1.8 Unitary Transformation

The similarity transformation may be done by a unitary matrix U. The transformation $U^{-1} A U=B$ is called unitary transformation. Since for a unitary matrix $U, U^{-1}=U^{\dagger}$; the unitary transformation may be defined as $B=U^{\dagger} A U$.

Problem 12: A Hermitian matrix remains Hermitian under unitary transformation.
Solution: Let A is a Hermitian matrix i.e. $A^{\dagger}=A$.

The unitary transformation matrix $B=U^{-1} A U=U^{\dagger} A U$ where U is a unitary matrix $\left(U U^{\dagger}=I \& U^{-1}=U^{\dagger}\right)$.

$$
\begin{aligned}
B & =U^{\dagger} A U \\
\Rightarrow B^{\dagger} & =\left(U^{\dagger} A U\right)^{\dagger} \\
& =U^{\dagger} A^{\dagger}\left(U^{\dagger}\right)^{\dagger} \\
& =U^{\dagger} A U \quad\left(\because A^{\dagger}=A\right) \\
& =B
\end{aligned}
$$

Thus B is Hermitian if A is Hermitian.
Problem 13: The norm of a matrix remains unchanged under the unitary transformation.

Solution: Consider a matrix A and its unitary transformation matrix $B=U^{-1} A U$, where U is a unitary matrix i.e. $U U^{\dagger}=U^{\dagger} U=I$ or $U^{-1}=U^{\dagger}$. Now,

$$
B^{\dagger}=\left(U^{-1} A U\right)^{\dagger}=\left(U^{\dagger} A U\right)^{\dagger}=U^{\dagger} A^{\dagger} U
$$

Multiplying the above equation by $B=U^{\dagger} A U$ from right

$$
\begin{aligned}
B^{\dagger} B & =U^{\dagger} A^{\dagger} U U^{\dagger} A U=U^{\dagger} A^{\dagger} A U \\
\Rightarrow\left|B^{\dagger} B\right| & =\left|U^{\dagger}\right|\left|A^{\dagger} A\right||U|=\left|U^{\dagger} U\right|\left|A^{\dagger} A\right|=\left|A^{\dagger} A\right|
\end{aligned}
$$

Thus the norm of the matrix remains invariant under the unitary transformation.

1.9 Evaluating Power of a Matrix

Consider diagonalization of a matrix A by the matrix $S: S^{-1} A S=D$ or, $A=S D S^{-1}$. For a function $f(A)$ of matrix A, we have

$$
\begin{equation*}
f(A)=S f(D) S^{-1} \tag{1.28}
\end{equation*}
$$

where $f(D)$ is similar function of D. Thus from eq. 1.28, for any power A^{n} of matrix A

$$
\begin{equation*}
A^{n}=S D^{n} S^{-1} \tag{1.29}
\end{equation*}
$$

Problem 14: $A=\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$. Find A^{50}.
Solution: Refer to Problem 10. The diagonal matrix $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ and the diagonalising matrix $S=\left(\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right)$. The inverse matrix $S^{-1}=-\frac{1}{2}\left(\begin{array}{cc}1 & -1 \\ -3 & 1\end{array}\right)$
\therefore By eq. 1.29 ,

$$
\begin{aligned}
A^{50}=S D^{50} S^{-1} & =-\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-3 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)^{50}\left(\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right) \\
& =-\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
3 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

1.10 Solutions of Linear Coupled First Order Ordinary Differential Equations

Consider the following pair of linear coupled first order differential equations:

$$
\begin{aligned}
& y_{1}^{\prime}(t)=a_{11} y_{1}(t)+a_{12} y_{2}(t) \\
& y_{2}^{\prime}(t)=a_{21} y_{1}(t)+a_{22} y_{2}(t)
\end{aligned}
$$

The equations, in matrix form, can be represented as

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{y_{1}}{y_{2}} \text { i.e. } Y^{\prime}=A Y
$$

Let the boundary conditions are $y_{1}=c_{1}$ and $y_{2}=c_{2}$ i.e. $Y(0)=\binom{c_{1}}{c_{2}}$

Steps:

- Determine the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$ of the matrix A.
- Find out the corresponding eigenvectors X_{1}, X_{2}, \ldots
- The solutions of the coupled equations can be written as $Y(t)=\sum_{i} a_{i} e^{\lambda_{i} t} X_{i}$, where a_{i} are arbitrary constants.
- Applying the boundary conditions a_{i} can be determined and exact solution is obtained.

Let us consider the following set of equations:

$$
\begin{aligned}
y_{1}^{\prime} & =2 y_{1}+3 y_{2} \\
y_{2}^{\prime} & =4 y_{1}+y_{2}
\end{aligned}
$$

The given initial conditions are $y_{1}(0)=2, y_{2}(0)=1$. The equations, in matrix form, can be represented as

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{ll}
2 & 3 \\
4 & 1
\end{array}\right)\binom{y_{1}}{y_{2}} \text { i.e. } Y^{\prime}=A Y
$$

where $A=\left(\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right)$. The eigenvalues of the matrix A are $\lambda_{1}=-2$ and $\lambda_{2}=5$.
Corresponding eigenvectors are $X_{1}=\binom{3}{-4}$ and $X_{1}=\binom{1}{1}$ respectively.
Thus, the general solutions are

$$
\begin{aligned}
Y(t) & =\sum_{i} a_{i} e^{\lambda_{i} t} X_{i} \\
\Rightarrow\binom{y_{1}(t)}{y_{2}(t)} & =a_{1} e^{-2 t}\binom{3}{-4}+a_{2} e^{5 t}\binom{1}{1} \\
\text { or, } y_{1}(t) & =3 a_{1} e^{-2 t}+a_{2} e^{5 t} \\
\text { and } y_{2}(t) & =-4 a_{1} e^{-2 t}+a_{2} e^{5 t}
\end{aligned}
$$

Applying the initial conditions,

$$
\begin{aligned}
& y_{1}(0)=3 a_{1}+a_{2}=2 \\
& y_{2}(0)=-4 a_{1}+a_{2}=1
\end{aligned}
$$

Solving these equations, we have $a_{1}=1$ and $a_{2}=-1$. Hence, the exact solutions are

$$
\begin{aligned}
y_{1}(t) & =3 e^{-2 t}-e^{5 t} \\
y_{2}(t) & =-4 e^{-2 t}-e^{5 t}
\end{aligned}
$$

Bibliography

[1] T. L. Chow, Mathematical Methods for Physicists: A Concise Introduction Cambridge University Press (2000)
[2] Charlie Harper, Introduction to Mathematical Physics Prentice Hall India (1978)
[3] B. S. Rajput, Mathematical Physics Pragati Prakashan (2014)

[^0]: ${ }^{1} A^{-n}=A^{-1} A^{-1} \ldots A^{-1}$ (n times $)$ is defined if A is a nonsingular matrix

[^1]: ${ }^{2}$ The task is left for the readers

