Lecture Notes: Matrices

Semester I Core Course 1
University of Calcutta

Dr. P. Mandal

Department of Physics
St. Paul’s Cathedral Mission College

July 19, 2019



Contents

1 Preliminary Topics
1.1 Definitions: Some Terminologies . . . . . . . . . . .. ... ... ... ..
1.2 Matrix Algebra . . . . . . ..
1.3 Special Square Matrices . . . . . . . ... ...
1.4 Eigenvalue Problems . . . . . . .. . ... ...
1.4.1 Corollaries . . . . . . . . . ..
1.5 Cayley-Hamilton Theorem . . . . . . . ... .. ... ... .. ......
1.6 Diagonalization of Matrices . . . . . . . .. .. .. ... ... ... ...
1.6.1 Corollaries . . . . . . . . . . ...
1.7 Similarity Transformation . . . . . . .. .. .. ... ... 0L
1.8 Unitary Transformation . . . . . . ... .. .. ... ... ... ...
1.9 Evaluating Power of a Matrix . . . . . ... .. ... ... ... ...
1.10 Solutions of Linear Coupled First Order Ordinary Differential Equations

DO =

15
18
20
21
22
22
23
24



1
Preliminary Topics

Syllabus: (a) Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar
and Unit Matrices. Transpose of a Matrix. Symmetric and Skew-Symmetric Matrices.
Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-
Singular matrices. Orthogonal and Unitary Matrices. Trace of a Matrix. Inner Product.

(b) Eigenvalues and Eigenvectors. Cayley-Hamiliton Theorem. Diagonalization of
Matrices. Solutions of Coupled Linear Ordinary Differential Equations. Functions of a
Matrix.

1.1 Definitions: Some Terminologies

1. Matrix: A matrix is an array of numbers which may be complex. The array
contains m X n numbers in m rows and n columns. m X n is the order of the matrix.

ay; a2 ... ... Qip

asy Q@22 ... ... Qop
A=

Am1 Am2 ... ... Amn

The element which belongs to the i-th row and j-th column is denoted as a;;.

2. Row matrix: A row matrix contains only one row i.e. the numbers are arrayed in
a single row. The order of such matrix is thus 1 x n.

R:(CLH aig ... ... Cbln)

3. Column matrix: A column matrix contains only one column i.e. the numbers are
arrayed in a single column. The order of such matrix is thus m x 1.

a11
21

Am1



. Null matrix: If all the elements of a matrix are zero, it is called a null matrix i.e.
for a null matrix a;; = 0 for all ¢, j.

. Square matrix: If the number of rows (m) and the number of columns (n) of
a matrix are equal, it is called a square matrix. The matrix S below is a square

matrix of order 3.
a1 G122 13
S = G21 Q22 Q23
a31 a3z ass

The elements a;; are called the diagonal elements.

. Diagonal matrix: If all the off-diagonal elements of a square matrix are zero but
at least one diagonal element is non-zero, it is called a diagonal matrix i.e. for a
diagonal matrix a;; # 0 for all < # j but a;; = 0 for at least one <.

a1 0 0
D = 0 929 0
0 0 ass

D is a diagonal matrix of order 3.

. Unit or Identity matrix: If all the diagonal elements of a diagonal matrix are
equal to identity, it is called a unit or identity matrix. For a unit matrix a;; = 0
for all ¢ # j and a;; = 1 for all 7 i.e. a;; = d;5.

1 00
I=| 0 1 0 | isa diagonal matrix of order 3.

001
. Equal matrices: Two matrices of same order are said to be equal if the elements
of one matrix are equal to the corresponding elements of other matrix i.e. matrices
A and B are equal if a;; = b;; for all 7, j.

1.2 Matrix Algebra

1. Addition & Subtraction: Addition or subtraction of two matrices A and B of

same order is defined as C' = A+ B where ¢;; = a;; £b;; for all 7 and j. For example,

A:<&11 Q12 &13>andB:<bn b12 b13>

a1 Q22 (A23 ba1  bag b3

ayp £b11 a2 £ 0o a1z £ b13
LA+ B=
( a1 £ by gy £ Doy a3 t 523

Properties:

e Matrix addition is commutative i.e. A+ B = B + A.
e Matrix addition is associative i.e. A+ (B+C)=(A+ B)+C
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2. Multiplication:

(a) Multiplication by a scalar: Multiplying a matrix by a number or scalar (say
k) means multiplying each element by the number i.e. kA = Ak = k(a;;).

(b) Matrix product: The product of two matrices A and B is defined as C' = AB,
where

S
Cij = Z ik bj
k=1

For the product to be defined, matrices A and B must be conformable i.e. if
A = (a);; is an m X n matrix, then B = (b);; must be an n x s matrix. The
product matrix C' is an m X s matrix. Consider, for example,

bll b12
A = < Gi1 iz G13 > and B = b21 b22

Q21 d22 Q23 b
31 b2

Therefore, by definition, the product matrix

C— a11bi1 + a12ba1 + a13bsr  ai1biz 4 aiabae + aizbso
a21b11 4 a9bay + agsbsi  ag1bi2 + ag2ba + aszbss

Consider the following system of equations:

3r —y+2z = -3
2e+3y—z = 2 (1.1)
T—=2y+z =

The set of equations can be written in matrix form as

3 -1 2 x -3
2 3 -1 y | =1 2
1 -2 1 z 5

Properties:

e Matrix multiplication is, in general, not commutative i.e. AB # BA.

e Matrix multiplication is associative i.e. A(BC) = (AB)C

e Matrix multiplication follows the distributive law i.e. A(B+ C) = AB +
AC.

(c) Direct product: The direct product is defined for general matrices. Given an
n X n matrix A and an m X m matrix B, the direct product of A and B is an
nm x nm matrix, and is defined by C'= A ® B where Cj;, j; = a;jby. If

A= @11 A12 and B — bii bio
21 A922 b21 622

a11b11  a11bi2 a2bin  aiebio

C=A®B= < anbB  a1aB ) _ ai1bor  a1ibye  aiabor  ayaba

an1 B axnB a21b11 a21b12  agebir  agbis
a21021  a21b22 by agbas

©Dr. P. Mandal 3
M: 8902442561



3. Commutator of matrices: Commutator of two square matrices A and B of same

order is defined as [A, B] = AB — BA. In general, AB # BA and hence [A, B] # 0.
For example,
1 2 10
A:<1 3>andB:<1 2)
Note that
1 2 1 0 3 4 1 0 1 2 1 2
AB:<1 3)(1 2>:<4 6>butBA:<1 2)(1 3>:<3 8)

If the commutator [A, B] = AB — BA = 0i.e. AB = BA, the matrices are said to
be commutative.

Properties:
 [A B]=—[B,A]
o [A,B+C]=[AB]+][AC]
e [A,BC] = [A,B|C+ B[A, (]
o [A[B,ClI+[B,[C, A +[C,[A,B]] =0

The anticommutator of two matrices is defined as {A, B} = AB + BA.

4. Power of a matrix: For any positive integer n, the power of a square matrix A is
defined as A" = AA...A (n times) i.e. A2 = AA, A> = AAA. In particular, A° = I,

the unit matrix!.

5. Function of a matrix: The function of a matrix maps a matrix to another matrix.
For example, consider a matrix function f(A) = 3A4% — 24 + I where I is the unit
matrix of same order. A more fancy example is f(A) = 3, arA¥, where a; are
scalar coefficients. Another common series is defined by

o0 k
A_ A
Tl
=0 v

There are several techniques for lifting a real function to a square matrix function.
If the real function f(z) has the Taylor series expansion

2

Fla) = F(O) + F/(0) + F/(0) 5 +

then a matrix function f(A) can be defined by substituting = by a matrix A i.e.

A2
FA) = FOT+ [(O)A+ F1(0) 5 + -
where the powers become matrix powers, the additions become matrix sums and
the multiplications become scaling operations.

LA™ = A71A71. A7 (n times) is defined if A is a nonsingular matrix
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6. Transpose of a matrix: For any matrix A, the transpose matrix AT is obtained
by interchanging corresponding rows and columns of A4, i.e. if A = (a;;), AT = (a;;).
For example,

1
(11 =2 T
A_<30 1>:>A_ _12

_ o W

Properties:
o (AT = A,
o (A+ BT = AT + BT,
o (AB)T = BT AT,
7. Complex Conjugate: For any matrix A, the complex conjugate matrix A* is

formed by taking the complex conjugate of each element of A, ie. if A = (a;),
A* = (aj;) for all i and j. For example,

(1 24 (12—
A‘<3—¢ i )jA—<3+z‘ —i)

Obviously, (A*)* = A.

8. Hermitian Conjugate: For an arbitrary matrix A, the Hermitian conjugate ma-
trix A" is obtained by taking the complex conjugate of the matrix, and then the
transpose of the complex conjugate matrix i.e. if A = (a;;), A" = (a;) for all i and
7. For example,

4 - <2+3z 4—3@>

44 3
. \NT . .
. 2—31 44 3 [ 2=3i —4i
= A" = . = .
—44 3 44+3t 3
Properties:
° (AJf)Jr = A.

° (A—I—B)T:AT—FBT.
o (AB)' = BTAT.

9. Trace of a matrix: The trace of a square matrix is defined as the sum of its
diagonal elements i.e. Tr(A) = 3, a;;. For example,

2
A_<0 3>:>Tr(A)—2—I—3—5

Properties:
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o Tr(A) = Tr(AT).
e Tr(A+ B) =Tr(A) + Tr(B).
e Tr(AB)=Tr(BA).
10. Determinant of a matrix: The determinant of a square matrix A is defined as
the determinant having same array as that of the matrix and is generally denoted

as |A| or det(A). For example, the determinant of the matrix A = ( ? i ) is

2 3
1 4
singular matrix.

Al =

= 5. If the determinant of a matrix is zero i.e. |A| =0, A is called a

Properties:
o |AB|=|BA| = |A||B]
o [AT]=|A|
11. Cofactor matrix:

The cofactor matrix is defined as A¢ = AY. For example,

a1 A1y Q13 All A12 A13

A= ag1 Qg2 (923 = A° = A%l A2 A%

asy Gsa  Qss A31 A32 A33

where

11 _ 1+1 | @22 @23 12 142 | 21 Q23 13 _ 143 | Q21 G22
a32 as3 azyp ass a3; a3z
21 _ 2+1| G12 A13 22 242 | @11 Q13 23 _ 243 | @11 Q12
a3z 33 a31 33 a31 a3z
31 _ 3+1| @12 d13 32 342 | @11 413 33 _ 3+3 | @11 A12
ag2 A23 Q21 Q23 21 A22

) 2 -1\. .. (30
ThecofactormatnxofA—(O 3 >ISA —<1 2)

12. Adjoint of a matrix:

The adjoint of a matrix is defined as the transpose of its cofactor matrix i.e.

2 -1 ) The cofac-

adj(A) = AT, For example, consider the matrix A = ( 0 3

. (30
tormatmxA-(l 2).

T
Hence, the adjoint matrix adj(A) = ( i) g ) = < g ; ) :

©Dr. P. Mandal 6
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13. Inverse of a matrix:

For a given nonsingular matrix A, there exists another matrix B such that AB =
BA = I. Matrix B is called the inverse matrix of A (B = A™'). For example,
consider the following matrices:

() (1)
(%) (38)- (44
- (13)(2 ) -(b) -

. B= ( 30 ) = A~! the inverse matrix of A.

Note that,

Similarly,

1 2
The inverse matrix can be found by using the relation
_1_ adj(4)
Al = (1.2)
|Al

Problem 1: Find out the inverse matriz of A = < 2~ )

Solution: Adjoint matrix of A i.e. adj(A4) = ( 3 ; ) The determinant of the
31
matrix i.e. |[A] = ‘ 0 2 ‘—6
Properties:
o (A7)l =A

o (A+B)'=A"1+ B
o (AB)"' =pB-1A"L.

14. Derivative of a matrix: The derivative of a matrix with respect to a variable say,
x is equal to the derivative of each element with respect x separately. For example,

ixw21_12x0
der \ e 0 222 ] e 0 622

15. Integral of a matrix: The integral of a matrix with respect to a variable say, x
is equal to the integral of each element with respect x separately. For example,

/x3x21_”§x3 +010203
6102$3_6xc% ¢ 0 ¢
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1.3 Special Square Matrices

1. Singular and non-singular matrices: If the determinant of a matrix is zero,
it is called singular i.e. for a singular matrix A, |A| = 0. Consider the following

matrix for example:
1 -1
=1 4)

As seen, |A| = =14 1 = 0. Therefore, it is a singular matrix.

For a non-singular matrix, |A| # 0.

2. Symmetric and skew-symmetric matrices: A matrix is said to be symmetric
if the transpose matrix is equal to the matrix itself i.e. for a symmetric matrix A,
AT = A. For example, consider the following matrix:

(01 r (0 1Y)
A_<10>:>A_<10>_A

If AT = —A, the matrix A is called anti-symmetric or skew-symmetric. For an
example, consider the matrix below:

(0 -1 r (0 1)
A‘<1 o>:>A_<—1 0)‘ A

Problem 2: Diagonal elements of a skew-symmetric matriz are zero.

Solution: For a skew-symmetric matrix A, AT = —A. In terms of the ij-th ele-
ment, a;; = —a;;.

Now, for the diagonal elements i = j.

Therefore, a;; = —ay; or, a; = 0 for all 7.

Problem 3: Any square matrixz can be uniquely written as the sum of a symmetric
matrix and a skew-symmetric matrix.
Solution: Let A is a square matrix.

A= ;(A+AT)+;(A—AT) =P+Q
Nm@Ph:;A+AﬁT:;&F+@¥V}:;MT+A%:P
Q7 = J(A— AT = (AT — (AT} = (a7~ 4) = —Q

i.e. P is a symmetric matrix and Q is a skew-symmetric matrix. So any square
matrix can be written as the sum of a symmetric matrix and a skew-symmetric
matrix. To prove the representation unique, we assume A = R + S where R is a
symmetric matrix and S is a skew-symmetric matrix i.e. BT = R and ST = —S.

AT=R"+S"T=R-5S

1 1
= R=S(A+ A7), = S(4- A7)

©Dr. P. Mandal 8
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3. Hermitian and skew-Hermitian matrices: A matrix is said to be Hermitian

if the Hermitian conjugate matrix is equal to the matrix itself i.e. for a Hermitian
matrix H, H' = H. For example, consider the following matrix:

0 i
H“<40>
T
0 —i 0 i
T _ _
= H = <2 o) _<—i o)‘H

If H' = —H, the matrix H is called anti-Hermitian or skew-Hermitian. For an
example, consider the matrix below:

0 i
T
0 —i 0 —i
T _ —
= H _<—i0>_«—i0>_ H

Problem 4: For an arbitrary matriz A, show that A+ A" and i(A — AT) are both
Hermitian.

Solution: A matrix H is Hermitian if H' = H. Now,

(A+at)' = afy(ah

= AT+ A
Therefore, A + A" is Hermitian. Similarly,
i(a-AN]" = —iat 4 (ah]
= —i(Af - 4)
= (A— A"

Therefore, i(A — AT) is also Hermitian.

. Orthogonal matrix: For a unitary matrix O, OOT = OTO = I, the identity
matrix. Consider the following example.

(01 r (01

o= (1o)=o=(11)
oo (0 1N[{O0 1\ [(10\ , s
00" = (1 0)(1 0)_<0 1)_1_00

So, O is a unitary matrix.

Problem 5: Show that the determinant of an orthogonal matriz is +1.

©Dr. P. Mandal 9
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Solution: For an orthogonal matrix O, OO = OTO = I, the identity matrix.

Now,
00" = |I|=1
= |0ll0"] = 1
=0 = 1 (-|0"]=10])
=|0] = +£1.

Problem 6: Show that the inverse of an orthogonal matriz is equal to its transpose
i.e. 071 =0T,

Solution: For an orthogonal matrix O, OOT = OTO = I. Since |O] = +1, the
inverse matrix O~! exists. Now,

000" = 071
0! = 0" (ro0t'0=1)

5. Unitary matrix: For a unitary matrix U, UUT = UTU = I, the identity matrix.
Consider the following example.

(0 (0 —i
(o) (5 )
0 i 0 —i 10
. T — — 7 —7Jt
oUt = ( 0)(_@. O)_<0 1>—I—UU

Hence, U is a unitary matrix.

Problem 7: Show that the inverse of a unitary matriz is equal to its Hermitian
conjugate i.e. U™1 = UT.

Solution: For a unitary matrix U, UUT = UTU = I. If U~! is the inverse matrix
of U, U7'U = I. Now,

U-tuut U1
=U"' = Ul

6. Self-adjoint matrix: If the transpose of the cofactor matrix i.e. the adjoint of
any arbitrary matrix is equal to the matrix itself, it is called a self-adjoint matrix
i.e. for a self-adjoint matrix adj(A) = A. For example,

(0 )= ()
s = (0 %) (35 ) -

©Dr. P. Mandal 10
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1.4 Eigenvalue Problems

Every square matrix A satisfies a relation
AX =X (1.3)

where )\ is a scalar (real or complex) and X is a column matrix. Eq. (1.3) is called the
eigenvalue equation of matrix A with eigenvalue \ and eigenvector X. If A is a square
matrix of order n, X is a column matrix of order n x 1.

From eq. (1.3), (AX — AI)X = 0. In terms of the elements of the matrices A and X,

- n 1
aiq A a2 ap T
agq a9 — A (057 )
=0 (1.4)
Qn1 Qna e A, — A Ty

= (a;1 — N)x1 + a1 + ... + Q1T 0
a1y + (age — N)wg + ... + QonTh 0
..................................................... 0
..................................................... = 0

Ap1T1 + AnaTo + ...... + (apn — Nz, = 0

Thus we have a set of n number of linear homogeneous equations. Non-trivial solution
exists if the determinant of the coefficients vanishes, i.e.

ai] — A a12 A1p
a921 929 — Ao Ao,
D(\) = =0
an1 Ao e e A — A
S |A-A] = 0 (1.5)

D()) is a polynomial of degree n. It is called the characteristics polynomial of the
given matrix A.

D(\) = |[A — M| = 0 (eq. 1.5) is the characteristic equation of the matrix A. The
equation has m roots i.e. m number of possible values of A - say Aj, Ag,...., A, (some
of them may be equal). Thus we conclude that a matrix of order n has n number of
eigenvalues.

The polynomial D()\) of degree n can be expressed as

D) =|A—=X|=co+ A+ e\ + ... + e A" A" (1.6)

which implies that ¢y = |A].
As A1, Mg, ..., A, are the roots of the characteristic equation (eq. 1.5),

DOY = (A= N Ag = Ao — A) (1.7)

©Dr. P. Mandal 11
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By speculation of eq. 1.6 and eq. 1.7
/\1/\2”--)\71 = Cy = |A| (18)

Thus the product of the eigenvalues of a matrix is equal to its determinant.
Similary, by inspection of eq. 1.6 and eq. 1.7 (equating the coefficients of \"~1) we
find

Cn,1 - (_1)7171(&11 + a22 ‘|‘ + ann) - (_1)7171()\1 + )\2 —|— —|— )\n)
:>)\1+/\2++)\n = a11—|—a22+....+ann:Tr(A) (19)

Thus the sum of the eigenvalues is equal to the trace of the matrix.

2
3

1
2

Problem 8: Find the trace and determinant of the matriz A = ( : ) and hence

determine its eigenvalues.
Solution: The trace of the matrix is the sum of its diagonal elements i.e. Tr(A) =
2—-2=0.
The determinant of the matrix is
2 —1

|A|:‘3 —2

‘:—4+3:—1

If Ay and A, are the eigenvalues of the matrix, by eq. 1.8 and eq. 1.9 we have

)\1+/\2 = TI‘(A):O
)\1)\2 == |A‘:—1

Solving these equations, we find the eigenvalues as Ay = —1, A\, = 1.

How to determine the eigenvalues and the normalized eigenvectors of a matrix? Let
us understand with the following examples.

2 —1
Example 1: A= < 3 _9 )

The eigenvalue equation of the matrix is AX = AX or, (A — A[)X = 0 where \ is

the eigenvalue and X is the corresponding eigenvector. The characteristic equation is
|A— M| =0i.e.

2—A -1
’ 3 —2-) ‘ =0
=2-NMN2+MN)+3 =0
=)\ =1
or, A = =+l
Thus the eigenvalues are A\; = —1 and Ay = 1.
©Dr. P. Mandal 12
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Let, X; is the eigenvector of A which corresponds to the eigenvalue A\; = —1. From
the eigenvalue equation AX; = A\ X7, we have

(A-MDX; = 0
3 —1 T .
(5 )(2) - o
=3r1—29 = 0
or, ra = 313

If x1 = a, 9 = 3a where a is an arbitrary number (# 0). The eigenvector of the given

matrix corresponding to the eigenvalue \; = —1 is X; = 3aa . In normalized form,
1
X, — _1
In= U | 3

Similarly, let us consider X5 as the eigenvector of A corresponding to the eigenvalue
A2 = 1. From the eigenvalue equation AXs = A3 X5, we have

(A - )\QI)XQ == O
1 -1 I .
(5 5)(5) -
= r1 — Ty = O
or, r1 = X9
If x1 = b, 9 = b where b is another arbitrary number (# 0). Therefore, the eigenvector

: . . . b .
of the given matrix corresponding to the eigenvalue Ay = 1 is X5 = I In normalized

1
_ 1
form, Xy, = 7% ( 1
0 —1
1 0
The eigenvalue equation of the matrix is AX = AX or, (A — A[)X = 0 where \ is

the eigenvalue and X is the corresponding eigenvector. The characteristic equation is
|A— M| =0ie.

Example 2: A =

—A
FENIEE
=AN+1 = 0
or, \ = =41
Thus the eigenvalues are A\; = —¢ and Ay = 1.
Let, X is the eigenvector of A which corresponds to the eigenvalue A\; = —i. From

the eigenvalue equation AX; = A\ X7, we have

(A— )\1])X1 - 0

~(1 ) () =

=1ir1 —2r9 = 0
or, Ty = 11X
©Dr. P. Mandal 13
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If 27 = a, x9 = ia where a is an arbitrary number (# 0). The eigenvector of the given

matrix corresponding to the eigenvalue \; = —1 is X; = < Z.C; ) In normalized form,
1
1
Xin = VAW

Similarly, let us consider X5 as the eigenvector of A corresponding to the eigenvalue
A2 = 1. From the eigenvalue equation AXs; = Ay X5, we have

(A - /\2])X2 == O
-()(R) -
1 — 9
=r1—1r9g = 0
or, ;] = 1o
If o = b, x1 = ib where b is another arbitrary number (# 0). Therefore, the eigenvector

) . In normalized

b

of the given matrix corresponding to the eigenvalue \y = 7 is Xy = ( b

form, Xgn:% ( i )

1
Example 3: A= | 0
0

N O O
o NN O

The eigenvalue equation of the matrix is AX = AX or, (A — X)X = 0 where A is
the eigenvalue and X is the corresponding eigenvector. The characteristic equation is

|A— M| =0i.e.

1-x 0 O
0 -\ 2 = 0
0 2 =

= (1-XN\—-4) =0
or, A = 1,£2
Thus the eigenvalues are Ay = —2, Ay = 1 and \3 = 2.

Let, X7 is the eigenvector of A which corresponds to the eigenvalue A\ = —2. From
the eigenvalue equation AX; = A\ X7, we have

(A-MDX; = 0

300 T
=0 2 2 X9 =0
0 2 2 T3
=3r1 = 0 & To+x3 =0
or, t; = 0 & x9=—u3
If z3 = a, x93 = —a where a is an arbitrary number (# 0). The eigenvector of the given
0
matrix corresponding to the eigenvalue \y = —2 is X; = [ —a |. In normalized form,
a
©Dr. P. Mandal 14
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_ 1
X1, = & —11

Similarly, let us consider X, as the eigenvector of A corresponding to the eigenvalue
Ao = 1. From the eigenvalue equation AXy = Ay X5, we have

0 0 0 T

0 2 -1 XT3
:>—.CL'2+2.1'3 = 0 & 21’2—1'3:0

or, ro =23 = 0

Let x1 = b, an arbitrary number (# 0). The eigenvector of the given matrix corresponding

b 1
to the eigenvalue \y = 1is Xo = | 0 |. In normalized form, X5, = | 0
0 0

If X3 is the eigenvector of A corresponding to the eigenvalue A3 = 2, from the eigen-
value equation AX35 = A\3X3 we have

(A= AsDX5; = 0
0
2

—1 0 T
= 0 -2 T = 0
0 2 -2 T3

=z = 0 & To = T3

Let 9 = z3 = ¢, where c¢ is an arbitrary number (# 0). The eigenvector of the given

0
matrix corresponding to the eigenvalue A\3 = 2 is X3 = | ¢ |. In normalized form,
c
0
_ 1

1.4.1 Corollaries

1. FEigenvalues of a diagonal matrixz are equal to its diagonal elements.

Proof: Consider a diagonal matrix of order n:

a1q 0 0
0 929 0
0 0 Ann
©Dr. P. Mandal 15
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The characteristic equation of the matrix is

ID—X| = 0
aip — A a12 A1np
aosq a9 — A aon
= =0
Qnt Qn2 e e Opp — A

= (CL11 — )\)(&22 — )\)(a,m — )\) = 0
ie. A =a,as,..., a,,, the diagonal elements of the matrix.

2. At least one eigenvalue of a singular matriz is zero.

Proof: Consider a singular matrix A i.e. |A] =0.
If A1, Ao, A3, ... are the eigenvalues of the matrix A, the product of the eigenvalues
must be equal to the determinant of A (eq. 1.8) i.e.

)\1.)\2.)\3... = ’A‘ == 0
Therefore, at least one of the eigenvalues must be zero.

3. If X is the eigenvalue of a mon-singular matriz A, the eigenvalue of A™' is 1/
corresponding to a given eigenvector.

Proof: Let X and )\ are respectively the eigenvalues of a non-singular matrix A and
its inverse matrix A~! corresponding to the same eigenvector X. The eigenvalue
equations are

AX = X
AT'X = NX
Now multiplying the first equation by A~! from left
ATTAX = MT'X
=X = X
or, 1-AN)X = 0

Since X is the eigenvector (X # 0), X = 1/)\ i.e. the eigenvalues of the inverse
matrix are the reciprocal of the eigenvalues of the original matrix.

4. FEigenvalues of a unitary matriz are of unit magnitude.

Proof: Consider a unitary matrix U having an eigenvalue A corresponding to an
eigenvector X. The eigenvalue equation is

UX =)2X (1.10)
Taking the Hermitian conjugate of eq. 1.10
Ux) = (AX)!
= XUt = »x7 (1.11)
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Multiplying eq. (1.11) by eq. (1.10) from left
XX = XMAX'X
= X'X = MAX'X (.U is unitary, U'U = I)
or, (1 - NHX'X = 0
=1-\7 = 0 (XX #0)
= A\? =1

5. The eigenvalues of a Hermitian matriz are real and the eigenvectors corresponding
to different eigenvalues are orthogonal.

Proof: Let us consider a Hermitian matrix H having an eigenvalue A corresponding
to an eigenvector X. The eigenvalue equation is

HX =)\X (1.12)
Multiplying eq.(1.12) by X from left
XTHX = \XTX (1.13)
Taking the hermitian conjugation of eq. (1.12),
(HX)T = (AX)!
= XTHT = \XT
or, X'H = XX' (. His Hermitian, H' = H) (1.14)
Multiplying eq.(1.14) by X from right
XTHX = XX (1.15)
Comparing eq.(1.13) and eq.(1.15),
AXTX = MXTX
= A= A)XTX = 0
=\ = A (XX #£0)
Thus the eigenvalues of a Hermitian matrix are real.
Now consider two distinct eigenvalues A; and A\, of the Hermitian matrix H corre-
sponding to the eigenvectors X; and X, respectively. \j = Ay, A5 = Ay and Ay # A,
The eigenvalue equations are
HXl == )\1X1 (116)
HXy; = XXy (1.17)

Taking the hermitian conjugation of eq. (1.17),
(HX:)! = (AXy)!
= XIH = MNX) (CHY=H& N =)\) (1.18)
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Multiplying eq.(1.18) by X; from right

XITHX, = MXIX, (1.19)
Multiplying eq.(1.16) by X from left

XIHX, = M\ XX, (1.20)
Comparing eq. 1.19 and eq. 1.20,

MXIXT = MNXIX
= (M- M)XIX; = 0
:>X;rX1 =0 (A#N)

Thus X; and X, are orthogonal.

6. If two matrices commute, they will have simultaneous eigenfunction.

Proof: Let two matrices A and B commute i.e. AB = BA.
If X is an eigenvector of A and A is the associated eigenvalue, AX = \X.
Multiplying by B from left,

BAX = ABX
or, ABX = ABX (. AB= BA)
= A(BX) = A(BX)

Thus BX is another eigenfunction of A for the same eigenvalue A. BX is therefore,
a scalar multiple of X i.e.
BX =uX (1.21)

This is the eigenvalue equation of matrix B with eigenvalue p and associated eigen-
function X. Thus X is the simultaneous eigenfunction for the matrices A and
B.

1.5 Cayley-Hamilton Theorem

Cayley-Hamilton theorem states that every square matrix satisfies its own characteris-
tic equation. Let us consider a matrix A of order n. If X is the eigenvalue of A, the
characteristic equation is D(\) = |A — AI| = 0. We rewrite eq. 1.6 as

D(/\) =cot+ A+ CQ)\Z + ... + A" = Z Ci>\i (122)
=0

is a polynomial of order n. The Cayley-Hamilton theorem states that substituting the
matrix A for A in this polynomial (eq. 1.22) results in the null matrix i.e.

D(A) = iciAi =0 (1.23)
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The theorem can be verified with the following example.

Consider a matrix A = ( g :; ) The characteristic equation of the matrix is
2—-X -1
S N
= D(\) = M—-1=0 (1.24)

By Cayley-Hamilton theorem, the characteristic eq. 1.24 will be satisfied by the matrix
Aie D(A)=A?—-T=0or, A>=1. Now,

, (2 -1\(2 -1\ (10)
A<3 _2><3_2><01>I(q.e.d.)

Cayley-Hamilton theorem is often used to determine the inverse of a matrix. Given
the characteristic equation (eq. 1.22) of a matrix A, Cayley-Hamilton theorem implies

D(A) = ZC,'Ai =col + 1A+ A% + ... +c, A" =0 (1.25)
i=0

Multiplying eq. 1.25 by A~

col A7+ AAT 4 APA 4 +c, ATATE =0
or, coA ™t + 1l + A+ ... +c, AV =0
or, c)A™ = —(c1] + oA+ ... + e, AP
1 1 :
= A =——(al+ A+ . A === AT

Co Co =1

2 01
Problem 9: Determine the inverse of the matric A = | 1 1 2 | by using the
011

Cayley-Hamilton theorem.
Solution: The characteristic equation of the matrix is

2—-X 0 1
1 1-Xx 2 =0
0 11—
= 2-MN{1-X*=2}+1 = 0
= A —4N+30+1 = 0 (1.26)

By Cayley-Hamilton theorem, eq. 1.26 will be satisfied by the matrix A itself i.e.
AP —4A* +3A+1=0 (1.27)
Multiplying eq. 1.27 by A™1,
APATY —4APAT 4 3AAT HTAT =0
= A= —(A* — 4A + 3])
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2 0 1 2 0 1 4 1 3
Now, A2=11 1 2 112|=|3365
01 1 01 1 1 2 3
4 1 3 2 0 1 1 00
A =A%+ 4A-31 = —| 335 |44 11 2|=-31010
1 2 3 01 1 00 1
1 -1 1
- 1 2 3
-1 2 2

1.6 Diagonalization of Matrices

A diagonal matrix corresponding to a square matrix is a matrix of same order having
its diagonal elements as the eigenvalues of the original matrix and all other elements are
zero. For example, consider

ar a2 ... ... Qip
ag1 Ag92 ... ... Qopn
A=
Ap1 QAp2 ... .. Qpp
and the eigenvalues of A are Ay, Ao, ... A,. Therefore, the diagonal matrix of A is
MO 0
0 X 0
D =

0 0 An

If A has n number of linearly independent eigenvectors, a matrix S can be found such
that S~tAS = D, the diagonal matrix. The matrix S is called the diagonalizing matrix.

Let, Xi, X5, ... X,, are the linearly independent eigenvectors of A. Thus the diago-
nalizing matrix

11 T12 ... ... T1n
To21 X922 ... ... Top
Tnl Tp2 v o Tpnp

where we denote the eigenvectors X; by the column matrices having elements x;, 9, ...
Tpi-

J

Note that the diagonalizing matrix S is not unique as we could arrange the eigenvec-
tors X1, Xo, ... X,, in any order to construct it. The following steps may be followed to
diagonalize a matrix:
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e Find the eigenvalues of original matrix.

e Find out corresponding eigenvectors. The eigenvectors must be linearly indepen-
dent. Otherwise, the matrix will not be diagonalizable.

e Construct the diagonalizing matrix S with its column elements as the linearly in-
dependent eigenvectors.

e Determine the inverse matrix S—!.

e The matrix D = S7'AS is the diagonal matrix with \;, X, ... )\, as its successive
diagonal elements, where \; is the eigenvalue corresponding to the eigenvector Xj.

Problem 10: Diagonalize the matriz

(3 %)

Solution: Note that the eigenvalues of A are \y = —1, Ay = 1. Corresponding
eigenvectors are X; = < ;) > and Xy = < 1 ) respectively. The eigenvectors are linearly
independent?.

Thus the diagonalizing matrix S = ;

1
1
1 -1
. ; -1 _ _1
The inverse matrix S™" = —3 ( 3 1 )

Therefore, the diagonal matrix
1 1 -1 2 —1 11 -1 0
_q-lpgo_ _* _
b=545= 2(—3 1)(3 —2)(3 1) (0 1)

1.6.1 Corollaries

1. Diagonalizing matriz of a real symmetric matriz is orthogonal.

Proof: Let us consider a symmetric matrix A i.e. AT = A. If \; are the eigenvalues
of A and S is the diagonalizing matrix,

ST'AS = D =diag(\, Mg, )
= (S7TAS)" D
= §TAT(S) = D
= STAS™HT = S'AS
=S = 5!
=S7S =1

i.e. S is an orthogonal matrix.

2The task is left for the readers
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2. Diagonalizing matrixz of a Hermitian matrixz is unitary.

Proof: Let us consider a Hermitian matrix H i.e. H' = H. If D is the diagonal
matrix and S is the corresponding diagonalizing matrix,

S'HS = D

= (ST'HS)! = Df

= STHI(S™H) = D

= STH(S™M = S'HS
=5 = 57!
=SS = T

i.e. S is unitary.

1.7 Similarity Transformation

Consider a square matrix A of order n and a non-singular matrix S such that S™*AS = B,
another square matrix of same order as A. Matrix B is similar to A and the transforma-
tion from A to B through the relation S™'AS = B is called similarity transformation.
Diagonalization is a special type of similarity transformation.

Problem 11: Eigenvalues of a matrixz remain invariant under similarity transforma-
tion

Solution: Consider a similarity transformation S™*AS = B. If ) is the eigenvalue of
B, the characteristic equation is |[B — M| =0 i.e.

ISTTAS — M| =

= |ST'AS — STIAIS|
= [STH (A - AD)S]|

= |S7H|A = AL||S]
= [STIS||A-XI| =

= [A- M| =

o O O o o o

which is the characteristic equation of the original matrix A with same eigenvalue .
Thus the eigenvalues remain invariant under similarity transformation.

1.8 Unitary Transformation

The similarity transformation may be done by a unitary matrix U. The transformation
U-'AU = B is called unitary transformation. Since for a unitary matrix U, U~ = UT;
the unitary transformation may be defined as B = UTAU.

Problem 12: A Hermitian matriz remains Hermitian under unitary transformation.
Solution: Let A is a Hermitian matrix i.e. AT = A.
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The unitary transformation matrix B = U 'AU = U AU where U is a unitary matrix
Ut =1 & UL =U").

B = U'AU
= B = (UTAU)!
— UTAT(UT)T
= UAU (A" = A)
- B

Thus B is Hermitian if A is Hermitian.

Problem 13: The norm of a matrix remains unchanged under the unitary transfor-
mation.

Solution: Consider a matrix A and its unitary transformation matrix B = U1 AU,
where U is a unitary matrix i.e. UUT = UTU = I or U™! = UT. Now,

B = (UTAU)' = (UTAU)T = UTATU
Multiplying the above equation by B = UTAU from right

B'B = UTANUUTAU = UTATAU
= |B'B| = |UT||ATA||U| = |UTU||ATA| = |ATA]

Thus the norm of the matrix remains invariant under the unitary transformation.

1.9 Evaluating Power of a Matrix

Consider diagonalization of a matrix A by the matrix S: S7'AS = D or, A = SDSL.
For a function f(A) of matrix A, we have

f(A) = Sf(D)s™, (1.28)
where f(D) is similar function of D. Thus from eq. 1.28, for any power A™ of matrix A

A" =SD"S™? (1.29)

2 -1

Problem 14: A = < 3 _9

) . Find A,

-1 0

Solution: Refer to Problem 10. The diagonal matrix D = 0 1

) and the diag-

11

31

1 -1
. o a— 1
). The inverse matrix S~! = —35 < 3 1 )

onalising matrix S = (
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. By eq. 1.29,

A50 — SDSOs—l —

VRS
-
w
Hl
[u—
~_—
N
O
)
~_— = O
N
W =
— =
~—

— O

Il
N

1.10 Solutions of Linear Coupled First Order Ordi-
nary Differential Equations

Consider the following pair of linear coupled first order differential equations:

y1(t) = anyi(t) + aray(t)
Ys(t) = anyi(t) + axnys(t)

The equations, in matrix form, can be represented as

(yé ) =<a“ 2 ) <y1 ) ie. Y =AY
Ya 21 Q22 Y2
Let the boundary conditions are y; = ¢; and yy = o i.e. Y(0) = ( gl )
2
Steps:
e Determine the eigenvalues A1, Ao, ... of the matrix A.

e Find out the corresponding eigenvectors Xy, Xo, ...

The solutions of the coupled equations can be written as Y (t) = 3, a;e** X;, where
a; are arbitrary constants.

Applying the boundary conditions a; can be determined and exact solution is ob-
tained.

Let us consider the following set of equations:

Yy = 2y1+ 3y
vy = 4y + o

The given initial conditions are y;(0) = 2,y2(0) = 1. The equations, in matrix form, can

be represented as
By _ (23 (TR r
<y>—<41><y2>1.e.Y—AY
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where A = ? The eigenvalues of the matrix A are A\; = —2 and Ay = 5.

2

4
. . 3 1 .

Corresponding eigenvectors are X; = |~ 4 and X = 1 respectively.

Thus, the general solutions are

Y(t) = Zaie)‘itXi

< () = oo (5) v (1)

or, yi(t) = 3aie * 4 aze
and y5(t) = —daje ? + axe™
Applying the initial conditions,

yl(O) = 3(11 —f-CLQ =2
yQ(O) = —4@1 + a9 = 1

Solving these equations, we have a; = 1 and as = —1. Hence, the exact solutions are

yl(t) — 367215_6515
ya(t) = —de -
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