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Preliminary Topics

Syllabus: (a) Addition and Multiplication of Matrices. Null Matrices. Diagonal, Scalar
and Unit Matrices. Transpose of a Matrix. Symmetric and Skew-Symmetric Matrices.
Conjugate of a Matrix. Hermitian and Skew- Hermitian Matrices. Singular and Non-
Singular matrices. Orthogonal and Unitary Matrices. Trace of a Matrix. Inner Product.

(b) Eigenvalues and Eigenvectors. Cayley-Hamiliton Theorem. Diagonalization of
Matrices. Solutions of Coupled Linear Ordinary Differential Equations. Functions of a
Matrix.

1.1 Definitions: Some Terminologies
1. Matrix: A matrix is an array of numbers which may be complex. The array

contains m×n numbers in m rows and n columns. m×n is the order of the matrix.

A =


a11 a12 ... ... a1n

a21 a22 ... ... a2n

... ... ... ... ...

... ... ... ... ...
am1 am2 ... ... amn


The element which belongs to the i-th row and j-th column is denoted as aij.

2. Row matrix: A row matrix contains only one row i.e. the numbers are arrayed in
a single row. The order of such matrix is thus 1 × n.

R =
(

a11 a12 ... ... a1n

)
3. Column matrix: A column matrix contains only one column i.e. the numbers are

arrayed in a single column. The order of such matrix is thus m × 1.

C =


a11
a21
...
...

am1
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4. Null matrix: If all the elements of a matrix are zero, it is called a null matrix i.e.
for a null matrix aij = 0 for all i, j.

5. Square matrix: If the number of rows (m) and the number of columns (n) of
a matrix are equal, it is called a square matrix. The matrix S below is a square
matrix of order 3.

S =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


The elements aii are called the diagonal elements.

6. Diagonal matrix: If all the off-diagonal elements of a square matrix are zero but
at least one diagonal element is non-zero, it is called a diagonal matrix i.e. for a
diagonal matrix aij ̸= 0 for all i ̸= j but aii = 0 for at least one i.

D =

 a11 0 0
0 a22 0
0 0 a33


D is a diagonal matrix of order 3.

7. Unit or Identity matrix: If all the diagonal elements of a diagonal matrix are
equal to identity, it is called a unit or identity matrix. For a unit matrix aij = 0
for all i ̸= j and aii = 1 for all i i.e. aij = δij.

I =

 1 0 0
0 1 0
0 0 1

 is a diagonal matrix of order 3.

8. Equal matrices: Two matrices of same order are said to be equal if the elements
of one matrix are equal to the corresponding elements of other matrix i.e. matrices
A and B are equal if aij = bij for all i, j.

1.2 Matrix Algebra
1. Addition & Subtraction: Addition or subtraction of two matrices A and B of

same order is defined as C = A±B where cij = aij ±bij for all i and j. For example,

A =
(

a11 a12 a13
a21 a22 a23

)
and B =

(
b11 b12 b13
b21 b22 b23

)

∴ A ± B =
(

a11 ± b11 a12 ± b12 a13 ± b13
a21 ± b21 a22 ± b22 a23 ± b23

)

Properties:

• Matrix addition is commutative i.e. A + B = B + A.
• Matrix addition is associative i.e. A + (B + C) = (A + B) + C
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2. Multiplication:

(a) Multiplication by a scalar: Multiplying a matrix by a number or scalar (say
k) means multiplying each element by the number i.e. kA = Ak = k(aij).

(b) Matrix product: The product of two matrices A and B is defined as C = AB,
where

cij =
s∑

k=1
aikbkj

For the product to be defined, matrices A and B must be conformable i.e. if
A = (a)ij is an m × n matrix, then B = (b)ij must be an n × s matrix. The
product matrix C is an m × s matrix. Consider, for example,

A =
(

a11 a12 a13
a21 a22 a23

)
and B =

 b11 b12
b21 b22
b31 b32


Therefore, by definition, the product matrix

C =
(

a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32
a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32

)

Consider the following system of equations:

3x − y + 2z = −3
2x + 3y − z = 2 (1.1)
x − 2y + z = 5

The set of equations can be written in matrix form as 3 −1 2
2 3 −1
1 −2 1


 x

y
z

 =

 −3
2
5


Properties:

• Matrix multiplication is, in general, not commutative i.e. AB ̸= BA.
• Matrix multiplication is associative i.e. A(BC) = (AB)C
• Matrix multiplication follows the distributive law i.e. A(B + C) = AB +

AC.
(c) Direct product: The direct product is defined for general matrices. Given an

n × n matrix A and an m × m matrix B, the direct product of A and B is an
nm × nm matrix, and is defined by C = A ⊗ B where Cik,jl = aijbkl. If

A =
(

a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)

C = A ⊗ B =
(

a11B a12B
a21B a22B

)
=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


c⃝Dr. P. Mandal
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3. Commutator of matrices: Commutator of two square matrices A and B of same
order is defined as [A, B] = AB − BA. In general, AB ̸= BA and hence [A, B] ̸= 0.
For example,

A =
(

1 2
1 3

)
and B =

(
1 0
1 2

)
Note that

AB =
(

1 2
1 3

)(
1 0
1 2

)
=
(

3 4
4 6

)
but BA =

(
1 0
1 2

)(
1 2
1 3

)
=
(

1 2
3 8

)

If the commutator [A, B] = AB − BA = 0 i.e. AB = BA, the matrices are said to
be commutative.
Properties:

• [A, B] = −[B, A]
• [A, B + C] = [A, B] + [A, C]
• [A, BC] = [A, B]C + B[A, C]
• [A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0

The anticommutator of two matrices is defined as {A, B} = AB + BA.

4. Power of a matrix: For any positive integer n, the power of a square matrix A is
defined as An = AA...A (n times) i.e. A2 = AA, A3 = AAA. In particular, A0 = I,
the unit matrix1.

5. Function of a matrix: The function of a matrix maps a matrix to another matrix.
For example, consider a matrix function f(A) = 3A2 − 2A + I where I is the unit
matrix of same order. A more fancy example is f(A) = ∑

k akAk, where ak are
scalar coefficients. Another common series is defined by

eA =
∞∑

k=0

Ak

k!

There are several techniques for lifting a real function to a square matrix function.
If the real function f(x) has the Taylor series expansion

f(x) = f(0) + f ′(0)x + f ′′(0)x2

2!
+ ...

then a matrix function f(A) can be defined by substituting x by a matrix A i.e.

f(A) = f(0)I + f ′(0)A + f ′′(0)A2

2!
+ ...

where the powers become matrix powers, the additions become matrix sums and
the multiplications become scaling operations.

1A−n = A−1A−1...A−1 (n times) is defined if A is a nonsingular matrix

c⃝Dr. P. Mandal
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6. Transpose of a matrix: For any matrix A, the transpose matrix AT is obtained
by interchanging corresponding rows and columns of A, i.e. if A = (aij), AT = (aji).
For example,

A =
(

1 1 −2
3 0 1

)
⇒ AT =

 1 3
1 0

−2 1


Properties:

• (AT )T = A.
• (A + B)T = AT + BT .
• (AB)T = BT AT .

7. Complex Conjugate: For any matrix A, the complex conjugate matrix A∗ is
formed by taking the complex conjugate of each element of A, i.e. if A = (aij),
A∗ = (a∗

ij) for all i and j. For example,

A =
(

1 2 + i
3 − i i

)
⇒ A∗ =

(
1 2 − i

3 + i −i

)

Obviously, (A∗)∗ = A.

8. Hermitian Conjugate: For an arbitrary matrix A, the Hermitian conjugate ma-
trix A† is obtained by taking the complex conjugate of the matrix, and then the
transpose of the complex conjugate matrix i.e. if A = (aij), A† = (a∗

ji) for all i and
j. For example,

A =
(

2 + 3i 4 − 3i
4i 3

)

⇒ A† =
(

2 − 3i 4 + 3i
−4i 3

)T

=
(

2 − 3i −4i
4 + 3i 3

)

Properties:

• (A†)† = A.
• (A + B)† = A† + B†.
• (AB)† = B†A†.

9. Trace of a matrix: The trace of a square matrix is defined as the sum of its
diagonal elements i.e. Tr(A) = ∑

i aii. For example,

A =
(

2 i
0 3

)
⇒ Tr(A) = 2 + 3 = 5

Properties:

c⃝Dr. P. Mandal
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• Tr(A) = Tr(AT ).
• Tr(A + B) = Tr(A) + Tr(B).
• Tr(AB)=Tr(BA).

10. Determinant of a matrix: The determinant of a square matrix A is defined as
the determinant having same array as that of the matrix and is generally denoted

as |A| or det(A). For example, the determinant of the matrix A =
(

2 3
1 4

)
is

|A| =
∣∣∣∣∣ 2 3

1 4

∣∣∣∣∣ = 5. If the determinant of a matrix is zero i.e. |A| = 0, A is called a

singular matrix.
Properties:

• |AB| = |BA| = |A||B|
• |AT | = |A|

11. Cofactor matrix:
The cofactor matrix is defined as Ac = Aij. For example,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ⇒ Ac =

 A11 A12 A13

A21 A22 A23

A31 A32 A33


where

A11 = (−1)1+1
∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣ , A12 = (−1)1+2
∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣ , A13 = (−1)1+3
∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
A21 = (−1)2+1

∣∣∣∣∣ a12 a13
a32 a33

∣∣∣∣∣ , A22 = (−1)2+2
∣∣∣∣∣ a11 a13

a31 a33

∣∣∣∣∣ , A23 = (−1)2+3
∣∣∣∣∣ a11 a12

a31 a32

∣∣∣∣∣
A31 = (−1)3+1

∣∣∣∣∣ a12 a13
a22 a23

∣∣∣∣∣ , A32 = (−1)3+2
∣∣∣∣∣ a11 a13

a21 a23

∣∣∣∣∣ , A33 = (−1)3+3
∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣
The cofactor matrix of A =

(
2 −1
0 3

)
is Ac =

(
3 0
1 2

)

12. Adjoint of a matrix:
The adjoint of a matrix is defined as the transpose of its cofactor matrix i.e.

adj(A) = AcT . For example, consider the matrix A =
(

2 −1
0 3

)
. The cofac-

tor matrix Ac =
(

3 0
1 2

)
.

Hence, the adjoint matrix adj(A) =
(

3 0
1 2

)T

=
(

3 1
0 2

)
.

c⃝Dr. P. Mandal
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13. Inverse of a matrix:
For a given nonsingular matrix A, there exists another matrix B such that AB =
BA = I. Matrix B is called the inverse matrix of A (B = A−1). For example,
consider the following matrices:

A =
(

2 −5
−1 3

)
& B =

(
3 5
1 2

)
Note that,

AB =
(

2 −5
−1 3

)(
3 5
1 2

)
=
(

1 0
0 1

)
= I

Similarly,

BA =
(

3 5
1 2

)(
2 −5

−1 3

)
=
(

1 0
0 1

)
= I

∴ B =
(

3 5
1 2

)
= A−1, the inverse matrix of A.

The inverse matrix can be found by using the relation

A−1 = adj(A)
|A|

(1.2)

Problem 1: Find out the inverse matrix of A =
(

2 −1
0 3

)
.

Solution: Adjoint matrix of A i.e. adj(A) =
(

3 1
0 2

)
. The determinant of the

matrix i.e. |A| =
∣∣∣∣∣ 3 1

0 2

∣∣∣∣∣ = 6

∴ A−1 = 1
6

(
3 1
0 2

)
.

Properties:

• (A−1)−1 = A.
• (A + B)−1 = A−1 + B−1.
• (AB)−1 = B−1A−1.

14. Derivative of a matrix: The derivative of a matrix with respect to a variable say,
x is equal to the derivative of each element with respect x separately. For example,

d

dx

(
x x2 1
ex 0 2x3

)
=
(

1 2x 0
ex 0 6x2

)

15. Integral of a matrix: The integral of a matrix with respect to a variable say, x
is equal to the integral of each element with respect x separately. For example,∫ (

x 3x2 1
ex 0 2x3

)
=
(

x2

2 x3 x

ex c x4

2

)
+
(

c1 c2 c3
c4 0 c5

)

c⃝Dr. P. Mandal
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1.3 Special Square Matrices
1. Singular and non-singular matrices: If the determinant of a matrix is zero,

it is called singular i.e. for a singular matrix A, |A| = 0. Consider the following
matrix for example:

A =
(

1 −1
1 −1

)
As seen, |A| = −1 + 1 = 0. Therefore, it is a singular matrix.
For a non-singular matrix, |A| ̸= 0.

2. Symmetric and skew-symmetric matrices: A matrix is said to be symmetric
if the transpose matrix is equal to the matrix itself i.e. for a symmetric matrix A,
AT = A. For example, consider the following matrix:

A =
(

0 1
1 0

)
⇒ AT =

(
0 1
1 0

)
= A

If AT = −A, the matrix A is called anti-symmetric or skew-symmetric. For an
example, consider the matrix below:

A =
(

0 −1
1 0

)
⇒ AT =

(
0 1

−1 0

)
= −A

Problem 2: Diagonal elements of a skew-symmetric matrix are zero.
Solution: For a skew-symmetric matrix A, AT = −A. In terms of the ij-th ele-
ment, aij = −aji.
Now, for the diagonal elements i = j.
Therefore, aii = −aii or, aii = 0 for all i.

Problem 3: Any square matrix can be uniquely written as the sum of a symmetric
matrix and a skew-symmetric matrix.
Solution: Let A is a square matrix.

A = 1
2

(A + AT ) + 1
2

(A − AT ) = P + Q

Now, P T = 1
2

(A + AT )T = 1
2

{AT + (AT )T } = 1
2

(AT + A) = P

QT = 1
2

(A − AT )T = 1
2

{AT − (AT )T } = 1
2

(AT − A) = −Q

i.e. P is a symmetric matrix and Q is a skew-symmetric matrix. So any square
matrix can be written as the sum of a symmetric matrix and a skew-symmetric
matrix. To prove the representation unique, we assume A = R + S where R is a
symmetric matrix and S is a skew-symmetric matrix i.e. RT = R and ST = −S.

AT = RT + ST = R − S

⇒ R = 1
2

(A + AT ), S = 1
2

(A − AT )

c⃝Dr. P. Mandal
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3. Hermitian and skew-Hermitian matrices: A matrix is said to be Hermitian
if the Hermitian conjugate matrix is equal to the matrix itself i.e. for a Hermitian
matrix H, H† = H. For example, consider the following matrix:

H =
(

0 i
−i 0

)

⇒ H† =
(

0 −i
i 0

)T

=
(

0 i
−i 0

)
= H

If H† = −H, the matrix H is called anti-Hermitian or skew-Hermitian. For an
example, consider the matrix below:

H =
(

0 i
i 0

)

⇒ H† =
(

0 −i
−i 0

)T

=
(

0 −i
−i 0

)
= −H

Problem 4: For an arbitrary matrix A, show that A + A† and i(A − A†) are both
Hermitian.
Solution: A matrix H is Hermitian if H† = H. Now,(

A + A†
)†

= A† + (A†)†

= A† + A

Therefore, A + A† is Hermitian. Similarly,[
i
(
A − A†

)]†
= −i

[
A† + (A†)†

]
= −i

(
A† − A

)
= i(A − A†)

Therefore, i(A − A†) is also Hermitian.

4. Orthogonal matrix: For a unitary matrix O, OOT = OT O = I, the identity
matrix. Consider the following example.

O =
(

0 1
1 0

)
⇒ OT =

(
0 1
1 0

)

∴ OOT =
(

0 1
1 0

)(
0 1
1 0

)
=
(

1 0
0 1

)
= I = OT O

So, O is a unitary matrix.

Problem 5: Show that the determinant of an orthogonal matrix is ±1.

c⃝Dr. P. Mandal
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Solution: For an orthogonal matrix O, OOT = OT O = I, the identity matrix.
Now,

|OOT | = |I| = 1
⇒ |O||OT | = 1

⇒ |O|2 = 1 (∵ |OT | = |O|)
⇒ |O| = ±1.

Problem 6: Show that the inverse of an orthogonal matrix is equal to its transpose
i.e. O−1 = OT .
Solution: For an orthogonal matrix O, OOT = OT O = I. Since |O| = ±1, the
inverse matrix O−1 exists. Now,

O−1OOT = O−1I

⇒ O−1 = OT (∵ O−1O = I)

5. Unitary matrix: For a unitary matrix U , UU † = U †U = I, the identity matrix.
Consider the following example.

U =
(

0 i
i 0

)
⇒ U † =

(
0 −i

−i 0

)

∴ UU † =
(

0 i
i 0

)(
0 −i

−i 0

)
=
(

1 0
0 1

)
= I = U †U

Hence, U is a unitary matrix.

Problem 7: Show that the inverse of a unitary matrix is equal to its Hermitian
conjugate i.e. U−1 = U †.
Solution: For a unitary matrix U , UU † = U †U = I. If U−1 is the inverse matrix
of U , U−1U = I. Now,

U−1UU † = U−1I

⇒ U−1 = U †

6. Self-adjoint matrix: If the transpose of the cofactor matrix i.e. the adjoint of
any arbitrary matrix is equal to the matrix itself, it is called a self-adjoint matrix
i.e. for a self-adjoint matrix adj(A) = A. For example,

A =
(

−1 0
0 −1

)
⇒ Ac =

(
−1 0
0 −1

)

adj(A) =
(

−1 0
0 −1

)T

=
(

−1 0
0 −1

)
= A

c⃝Dr. P. Mandal
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1.4 Eigenvalue Problems
Every square matrix A satisfies a relation

AX = λX (1.3)

where λ is a scalar (real or complex) and X is a column matrix. Eq. (1.3) is called the
eigenvalue equation of matrix A with eigenvalue λ and eigenvector X. If A is a square
matrix of order n, X is a column matrix of order n × 1.

From eq. (1.3), (AX − λI)X = 0. In terms of the elements of the matrices A and X,
a11 − λ a12 ... ... a1n

a21 a22 − λ ... ... a2n

... ... ... ... ...

... ... ... ... ...
an1 an2 ... ... ann − λ




x1
x2
...
...
xn

 = 0 (1.4)

⇒ (a11 − λ)x1 + a12x2 + ...... + a1nxn = 0
a21x1 + (a22 − λ)x2 + ...... + a2nxn = 0
..................................................... = 0
..................................................... = 0

an1x1 + an2x2 + ...... + (ann − λ)xn = 0

Thus we have a set of n number of linear homogeneous equations. Non-trivial solution
exists if the determinant of the coefficients vanishes, i.e.

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 ... ... a1n

a21 a22 − λ ... ... a2n

... ... ... ... ...

... ... ... ... ...
an1 an2 ... ... ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ |A − λI| = 0 (1.5)

D(λ) is a polynomial of degree n. It is called the characteristics polynomial of the
given matrix A.

D(λ) = |A − λI| = 0 (eq. 1.5) is the characteristic equation of the matrix A. The
equation has n roots i.e. n number of possible values of λ - say λ1, λ2, ...., λn (some
of them may be equal). Thus we conclude that a matrix of order n has n number of
eigenvalues.

The polynomial D(λ) of degree n can be expressed as

D(λ) = |A − λI| = c0 + c1λ + c2λ
2 + ..... + cn−1λ

n−1 + cnλn (1.6)

which implies that c0 = |A|.
As λ1, λ2, ...., λn are the roots of the characteristic equation (eq. 1.5),

D(λ) = (λ1 − λ)(λ2 − λ).....(λn − λ) (1.7)

c⃝Dr. P. Mandal
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By speculation of eq. 1.6 and eq. 1.7

λ1λ2....λn = c0 = |A| (1.8)

Thus the product of the eigenvalues of a matrix is equal to its determinant.
Similary, by inspection of eq. 1.6 and eq. 1.7 (equating the coefficients of λn−1) we

find

cn−1 = (−1)n−1(a11 + a22 + .... + ann) = (−1)n−1(λ1 + λ2 + .... + λn)
⇒ λ1 + λ2 + .... + λn = a11 + a22 + .... + ann = Tr(A) (1.9)

Thus the sum of the eigenvalues is equal to the trace of the matrix.

Problem 8: Find the trace and determinant of the matrix A =
(

2 −1
3 −2

)
and hence

determine its eigenvalues.
Solution: The trace of the matrix is the sum of its diagonal elements i.e. Tr(A) =

2 − 2 = 0.
The determinant of the matrix is

|A| =
∣∣∣∣∣ 2 −1

3 −2

∣∣∣∣∣ = −4 + 3 = −1

If λ1 and λ2 are the eigenvalues of the matrix, by eq. 1.8 and eq. 1.9 we have

λ1 + λ2 = Tr(A) = 0
λ1λ2 = |A| = −1

Solving these equations, we find the eigenvalues as λ1 = −1, λ2 = 1.

How to determine the eigenvalues and the normalized eigenvectors of a matrix? Let
us understand with the following examples.

Example 1: A =
(

2 −1
3 −2

)
The eigenvalue equation of the matrix is AX = λX or, (A − λI)X = 0 where λ is

the eigenvalue and X is the corresponding eigenvector. The characteristic equation is
|A − λI| = 0 i.e. ∣∣∣∣∣ 2 − λ −1

3 −2 − λ

∣∣∣∣∣ = 0

⇒ (2 − λ)(2 + λ) + 3 = 0
⇒ λ2 = 1

or, λ = ±1

Thus the eigenvalues are λ1 = −1 and λ2 = 1.
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Let, X1 is the eigenvector of A which corresponds to the eigenvalue λ1 = −1. From
the eigenvalue equation AX1 = λ1X1, we have

(A − λ1I)X1 = 0

⇒
(

3 −1
3 −1

)(
x1
x2

)
= 0

⇒ 3x1 − x2 = 0
or, x2 = 3x1

If x1 = a, x2 = 3a where a is an arbitrary number (̸= 0). The eigenvector of the given

matrix corresponding to the eigenvalue λ1 = −1 is X1 =
(

a
3a

)
. In normalized form,

X1n = 1√
10

(
1
3

)
.

Similarly, let us consider X2 as the eigenvector of A corresponding to the eigenvalue
λ2 = 1. From the eigenvalue equation AX2 = λ2X2, we have

(A − λ2I)X2 = 0

⇒
(

1 −1
3 −3

)(
x1
x2

)
= 0

⇒ x1 − x2 = 0
or, x1 = x2

If x1 = b, x2 = b where b is another arbitrary number ( ̸= 0). Therefore, the eigenvector

of the given matrix corresponding to the eigenvalue λ2 = 1 is X2 =
(

b
b

)
. In normalized

form, X2n = 1√
2

(
1
1

)
.

Example 2: A =
(

0 −1
1 0

)
The eigenvalue equation of the matrix is AX = λX or, (A − λI)X = 0 where λ is

the eigenvalue and X is the corresponding eigenvector. The characteristic equation is
|A − λI| = 0 i.e. ∣∣∣∣∣ −λ 0

1 −λ

∣∣∣∣∣ = 0

⇒ λ2 + 1 = 0
or, λ = ±i

Thus the eigenvalues are λ1 = −i and λ2 = i.
Let, X1 is the eigenvector of A which corresponds to the eigenvalue λ1 = −i. From

the eigenvalue equation AX1 = λ1X1, we have
(A − λ1I)X1 = 0

⇒
(

i −1
1 i

)(
x1
x2

)
= 0

⇒ ix1 − x2 = 0
or, x2 = ix1
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If x1 = a, x2 = ia where a is an arbitrary number (̸= 0). The eigenvector of the given

matrix corresponding to the eigenvalue λ1 = −1 is X1 =
(

a
ia

)
. In normalized form,

X1n = 1√
2

(
1
i

)
.

Similarly, let us consider X2 as the eigenvector of A corresponding to the eigenvalue
λ2 = i. From the eigenvalue equation AX2 = λ2X2, we have

(A − λ2I)X2 = 0

⇒
(

−i −1
1 −i

)(
x1
x2

)
= 0

⇒ x1 − ix2 = 0
or, x1 = ix2

If x2 = b, x1 = ib where b is another arbitrary number ( ̸= 0). Therefore, the eigenvector

of the given matrix corresponding to the eigenvalue λ2 = i is X2 =
(

ib
b

)
. In normalized

form, X2n = 1√
2

(
i
1

)
.

Example 3: A =

 1 0 0
0 0 2
0 2 0


The eigenvalue equation of the matrix is AX = λX or, (A − λI)X = 0 where λ is

the eigenvalue and X is the corresponding eigenvector. The characteristic equation is
|A − λI| = 0 i.e. ∣∣∣∣∣∣∣

1 − λ 0 0
0 −λ 2
0 2 −λ

∣∣∣∣∣∣∣ = 0

⇒ (1 − λ)(λ2 − 4) = 0
or, λ = 1, ±2

Thus the eigenvalues are λ1 = −2, λ2 = 1 and λ3 = 2.
Let, X1 is the eigenvector of A which corresponds to the eigenvalue λ1 = −2. From

the eigenvalue equation AX1 = λ1X1, we have

(A − λ1I)X1 = 0

⇒

 3 0 0
0 2 2
0 2 2


 x1

x2
x3

 = 0

⇒ 3x1 = 0 & x2 + x3 = 0
or, x1 = 0 & x2 = −x3

If x3 = a, x2 = −a where a is an arbitrary number ( ̸= 0). The eigenvector of the given

matrix corresponding to the eigenvalue λ1 = −2 is X1 =

 0
−a
a

. In normalized form,
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X1n = 1√
2

 0
−1
1

.

Similarly, let us consider X2 as the eigenvector of A corresponding to the eigenvalue
λ2 = 1. From the eigenvalue equation AX2 = λ2X2, we have

(A − λ2I)X2 = 0

⇒

 0 0 0
0 −1 2
0 2 −1


 x1

x2
x3

 = 0

⇒ −x2 + 2x3 = 0 & 2x2 − x3 = 0
or, x2 = x3 = 0

Let x1 = b, an arbitrary number ( ̸= 0). The eigenvector of the given matrix corresponding

to the eigenvalue λ2 = 1 is X2 =

 b
0
0

. In normalized form, X2n =

 1
0
0

.

If X3 is the eigenvector of A corresponding to the eigenvalue λ3 = 2, from the eigen-
value equation AX3 = λ3X3 we have

(A − λ3I)X3 = 0

⇒

 −1 0 0
0 −2 2
0 2 −2


 x1

x2
x3

 = 0

⇒ x1 = 0 & x2 = x3

Let x2 = x3 = c, where c is an arbitrary number ( ̸= 0). The eigenvector of the given

matrix corresponding to the eigenvalue λ3 = 2 is X3 =

 0
c
c

. In normalized form,

X3n = 1√
2

 0
1
1

.

1.4.1 Corollaries
1. Eigenvalues of a diagonal matrix are equal to its diagonal elements.

Proof: Consider a diagonal matrix of order n:


a11 0 ... ... 0
0 a22 ... ... 0
... ... ... ... ...
... ... ... ... ...
0 0 ... ... ann
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The characteristic equation of the matrix is

|D − λI| = 0

⇒

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 ... ... a1n

a21 a22 − λ ... ... a2n

... ... ... ... ...

... ... ... ... ...
an1 an2 ... ... ann − λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

⇒ (a11 − λ)(a22 − λ)...(ann − λ) = 0

i.e. λ = a11, a22, ..., ann, the diagonal elements of the matrix.

2. At least one eigenvalue of a singular matrix is zero.
Proof: Consider a singular matrix A i.e. |A| = 0.
If λ1, λ2, λ3, ... are the eigenvalues of the matrix A, the product of the eigenvalues
must be equal to the determinant of A (eq. 1.8) i.e.

λ1.λ2.λ3... = |A| = 0

Therefore, at least one of the eigenvalues must be zero.

3. If λ is the eigenvalue of a non-singular matrix A, the eigenvalue of A−1 is 1/λ
corresponding to a given eigenvector.
Proof: Let λ and λ′ are respectively the eigenvalues of a non-singular matrix A and
its inverse matrix A−1 corresponding to the same eigenvector X. The eigenvalue
equations are

AX = λX

A−1X = λ′X

Now multiplying the first equation by A−1 from left

A−1AX = λA−1X

⇒ X = λλ′X

or, (1 − λλ′)X = 0

Since X is the eigenvector (X ̸= 0), λ′ = 1/λ i.e. the eigenvalues of the inverse
matrix are the reciprocal of the eigenvalues of the original matrix.

4. Eigenvalues of a unitary matrix are of unit magnitude.
Proof: Consider a unitary matrix U having an eigenvalue λ corresponding to an
eigenvector X. The eigenvalue equation is

UX = λX (1.10)

Taking the Hermitian conjugate of eq. 1.10

(UX)† = (λX)†

⇒ X†U † = λ∗X† (1.11)
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Multiplying eq. (1.11) by eq. (1.10) from left

X†U †UX = λ∗λX†X

⇒ X†X = λ∗λX†X (∵ U is unitary, U †U = I)
or, (1 − |λ|2)X†X = 0

⇒ 1 − |λ|2 = 0 (∵ X†X ̸= 0)
⇒ |λ|2 = 1

5. The eigenvalues of a Hermitian matrix are real and the eigenvectors corresponding
to different eigenvalues are orthogonal.
Proof: Let us consider a Hermitian matrix H having an eigenvalue λ corresponding
to an eigenvector X. The eigenvalue equation is

HX = λX (1.12)

Multiplying eq.(1.12) by X† from left

X†HX = λX†X (1.13)

Taking the hermitian conjugation of eq. (1.12),

(HX)† = (λX)†

⇒ X†H† = λ∗X†

or, X†H = λ∗X† (∵ H is Hermitian, H† = H) (1.14)

Multiplying eq.(1.14) by X from right

X†HX = λ∗X†X (1.15)

Comparing eq.(1.13) and eq.(1.15),

λX†X = λ∗X†X

⇒ (λ − λ∗)X†X = 0
⇒ λ∗ = λ (∵ X†X ̸= 0)

Thus the eigenvalues of a Hermitian matrix are real.
Now consider two distinct eigenvalues λ1 and λ2 of the Hermitian matrix H corre-
sponding to the eigenvectors X1 and X2 respectively. λ∗

1 = λ1, λ∗
2 = λ2 and λ1 ̸= λ2.

The eigenvalue equations are

HX1 = λ1X1 (1.16)
HX2 = λ2X2 (1.17)

Taking the hermitian conjugation of eq. (1.17),

(HX2)† = (λX2)†

⇒ X†
2H = λ2X

†
2 (∵ H† = H & λ∗

2 = λ2) (1.18)
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Multiplying eq.(1.18) by X1 from right

X†
2HX1 = λ2X

†
2X1 (1.19)

Multiplying eq.(1.16) by X†
2 from left

X†
2HX1 = λ1X

†
2X1 (1.20)

Comparing eq. 1.19 and eq. 1.20,

λ1X
†
2X1 = λ2X

†
2X1

⇒ (λ1 − λ2)X†
2X1 = 0

⇒ X†
2X1 = 0 (∵ λ2 ̸= λ1)

Thus X1 and X2 are orthogonal.

6. If two matrices commute, they will have simultaneous eigenfunction.
Proof: Let two matrices A and B commute i.e. AB = BA.
If X is an eigenvector of A and λ is the associated eigenvalue, AX = λX.
Multiplying by B from left,

BAX = λBX

or, ABX = λBX (∵ AB = BA)
⇒ A(BX) = λ(BX)

Thus BX is another eigenfunction of A for the same eigenvalue λ. BX is therefore,
a scalar multiple of X i.e.

BX = µX (1.21)

This is the eigenvalue equation of matrix B with eigenvalue µ and associated eigen-
function X. Thus X is the simultaneous eigenfunction for the matrices A and
B.

1.5 Cayley-Hamilton Theorem
Cayley-Hamilton theorem states that every square matrix satisfies its own characteris-
tic equation. Let us consider a matrix A of order n. If λ is the eigenvalue of A, the
characteristic equation is D(λ) = |A − λI| = 0. We rewrite eq. 1.6 as

D(λ) = c0 + c1λ + c2λ
2 + ..... + cnλn =

n∑
i=0

ciλ
i (1.22)

is a polynomial of order n. The Cayley-Hamilton theorem states that substituting the
matrix A for λ in this polynomial (eq. 1.22) results in the null matrix i.e.

D(A) =
n∑

i=0
ciA

i = 0 (1.23)
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The theorem can be verified with the following example.

Consider a matrix A =
(

2 −1
3 −2

)
. The characteristic equation of the matrix is

D(λ) =
∣∣∣∣∣ 2 − λ −1

3 −2 − λ

∣∣∣∣∣ = 0

⇒ D(λ) = λ2 − 1 = 0 (1.24)

By Cayley-Hamilton theorem, the characteristic eq. 1.24 will be satisfied by the matrix
A i.e. D(A) = A2 − I = 0 or, A2 = I. Now,

A2 =
(

2 −1
3 −2

)(
2 −1
3 −2

)
=
(

1 0
0 1

)
= I (q.e.d.)

Cayley-Hamilton theorem is often used to determine the inverse of a matrix. Given
the characteristic equation (eq. 1.22) of a matrix A, Cayley-Hamilton theorem implies

D(A) =
n∑

i=0
ciA

i = c0I + c1A + c2A
2 + ..... + cnAn = 0 (1.25)

Multiplying eq. 1.25 by A−1,

c0IA−1 + c1AA−1 + c2A
2A−1 + ..... + cnAnA−1 = 0

or, c0A
−1 + c1I + c2A + ..... + cnAn−1 = 0

or, c0A
−1 = −(c1I + c2A + ..... + cnAn−1)

⇒ A−1 = − 1
c0

(c1I + c2A + ..... + cnAn−1) = − 1
c0

n∑
i=1

ciA
i−1

Problem 9: Determine the inverse of the matrix A =

 2 0 1
1 1 2
0 1 1

 by using the

Cayley-Hamilton theorem.
Solution: The characteristic equation of the matrix is∣∣∣∣∣∣∣

2 − λ 0 1
1 1 − λ 2
0 1 1 − λ

∣∣∣∣∣∣∣ = 0

⇒ (2 − λ){(1 − λ)2 − 2} + 1 = 0
⇒ λ3 − 4λ2 + 3λ + 1 = 0 (1.26)

By Cayley-Hamilton theorem, eq. 1.26 will be satisfied by the matrix A itself i.e.

A3 − 4A2 + 3A + I = 0 (1.27)

Multiplying eq. 1.27 by A−1,

A3A−1 − 4A2A−1 + 3AA−1 + IA−1 = 0
⇒ A−1 = −(A2 − 4A + 3I)
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Now, A2 =

 2 0 1
1 1 2
0 1 1


 2 0 1

1 1 2
0 1 1

 =

 4 1 3
3 3 5
1 2 3



∴ A−1 = −A2 + 4A − 3I = −

 4 1 3
3 3 5
1 2 3

+ 4

 2 0 1
1 1 2
0 1 1

− 3

 1 0 0
0 1 0
0 0 1



=

 1 −1 1
1 2 3

−1 2 2



1.6 Diagonalization of Matrices
A diagonal matrix corresponding to a square matrix is a matrix of same order having
its diagonal elements as the eigenvalues of the original matrix and all other elements are
zero. For example, consider

A =


a11 a12 ... ... a1n

a21 a22 ... ... a2n

... ... ... ... ...

... ... ... ... ...
an1 an2 ... ... ann


and the eigenvalues of A are λ1, λ2, ... λn. Therefore, the diagonal matrix of A is

D =


λ1 0 ... ... 0
0 λ2 ... ... 0
... ... ... ... ...
... ... ... ... ...
0 0 ... ... λn


If A has n number of linearly independent eigenvectors, a matrix S can be found such
that S−1AS = D, the diagonal matrix. The matrix S is called the diagonalizing matrix.

Let, X1, X2, ... Xn are the linearly independent eigenvectors of A. Thus the diago-
nalizing matrix

S = (X1X2...Xn) =


x11 x12 ... ... x1n

x21 x22 ... ... x2n

... ... ... ... ...

... ... ... ... ...
xn1 xn2 ... ... xnn


where we denote the eigenvectors Xi by the column matrices having elements x1i, x2i, ...,
xni.

Note that the diagonalizing matrix S is not unique as we could arrange the eigenvec-
tors X1, X2, ... Xn in any order to construct it. The following steps may be followed to
diagonalize a matrix:
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• Find the eigenvalues of original matrix.

• Find out corresponding eigenvectors. The eigenvectors must be linearly indepen-
dent. Otherwise, the matrix will not be diagonalizable.

• Construct the diagonalizing matrix S with its column elements as the linearly in-
dependent eigenvectors.

• Determine the inverse matrix S−1.

• The matrix D = S−1AS is the diagonal matrix with λ1, λ2, ... λn as its successive
diagonal elements, where λi is the eigenvalue corresponding to the eigenvector Xi.

Problem 10: Diagonalize the matrix

A =
(

2 −1
3 −2

)

Solution: Note that the eigenvalues of A are λ1 = −1, λ2 = 1. Corresponding

eigenvectors are X1 =
(

1
3

)
and X2 =

(
1
1

)
respectively. The eigenvectors are linearly

independent2.

Thus the diagonalizing matrix S =
(

1 1
3 1

)

The inverse matrix S−1 = −1
2

(
1 −1

−3 1

)
Therefore, the diagonal matrix

D = S−1AS = −1
2

(
1 −1

−3 1

)(
2 −1
3 −2

)(
1 1
3 1

)
=
(

−1 0
0 1

)

1.6.1 Corollaries
1. Diagonalizing matrix of a real symmetric matrix is orthogonal.

Proof: Let us consider a symmetric matrix A i.e. AT = A. If λi are the eigenvalues
of A and S is the diagonalizing matrix,

S−1AS = D = diag(λ1, λ2, ...λn)
⇒ (S−1AS)T = DT

⇒ ST AT (S−1)T = D

⇒ ST A(S−1)T = S−1AS

⇒ ST = S−1

⇒ ST S = I

i.e. S is an orthogonal matrix.
2The task is left for the readers
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2. Diagonalizing matrix of a Hermitian matrix is unitary.
Proof: Let us consider a Hermitian matrix H i.e. H† = H. If D is the diagonal
matrix and S is the corresponding diagonalizing matrix,

S−1HS = D

⇒ (S−1HS)† = D†

⇒ S†H†(S−1)† = D

⇒ S†H(S−1)† = S−1HS

⇒ S† = S−1

⇒ S†S = I

i.e. S is unitary.

1.7 Similarity Transformation
Consider a square matrix A of order n and a non-singular matrix S such that S−1AS = B,
another square matrix of same order as A. Matrix B is similar to A and the transforma-
tion from A to B through the relation S−1AS = B is called similarity transformation.
Diagonalization is a special type of similarity transformation.

Problem 11: Eigenvalues of a matrix remain invariant under similarity transforma-
tion

Solution: Consider a similarity transformation S−1AS = B. If λ is the eigenvalue of
B, the characteristic equation is |B − λI| = 0 i.e.

|S−1AS − λI| = 0
⇒ |S−1AS − S−1λIS| = 0

⇒ |S−1(A − λI)S| = 0
⇒ |S−1||A − λI||S| = 0
⇒ |S−1S||A − λI| = 0

⇒ |A − λI| = 0

which is the characteristic equation of the original matrix A with same eigenvalue λ.
Thus the eigenvalues remain invariant under similarity transformation.

1.8 Unitary Transformation
The similarity transformation may be done by a unitary matrix U . The transformation
U−1AU = B is called unitary transformation. Since for a unitary matrix U , U−1 = U †;
the unitary transformation may be defined as B = U †AU .

Problem 12: A Hermitian matrix remains Hermitian under unitary transformation.
Solution: Let A is a Hermitian matrix i.e. A† = A.
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The unitary transformation matrix B = U−1AU = U †AU where U is a unitary matrix
(UU † = I & U−1 = U †).

B = U †AU

⇒ B† = (U †AU)†

= U †A†(U †)†

= U †AU (∵ A† = A)
= B

Thus B is Hermitian if A is Hermitian.
Problem 13: The norm of a matrix remains unchanged under the unitary transfor-

mation.
Solution: Consider a matrix A and its unitary transformation matrix B = U−1AU ,

where U is a unitary matrix i.e. UU † = U †U = I or U−1 = U †. Now,

B† = (U−1AU)† = (U †AU)† = U †A†U

Multiplying the above equation by B = U †AU from right

B†B = U †A†UU †AU = U †A†AU

⇒ |B†B| = |U †||A†A||U | = |U †U ||A†A| = |A†A|

Thus the norm of the matrix remains invariant under the unitary transformation.

1.9 Evaluating Power of a Matrix
Consider diagonalization of a matrix A by the matrix S: S−1AS = D or, A = SDS−1.
For a function f(A) of matrix A, we have

f(A) = Sf(D)S−1, (1.28)

where f(D) is similar function of D. Thus from eq. 1.28, for any power An of matrix A

An = SDnS−1 (1.29)

Problem 14: A =
(

2 −1
3 −2

)
. Find A50.

Solution: Refer to Problem 10. The diagonal matrix D =
(

−1 0
0 1

)
and the diag-

onalising matrix S =
(

1 1
3 1

)
. The inverse matrix S−1 = −1

2

(
1 −1

−3 1

)
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∴ By eq. 1.29,

A50 = SD50S−1 = −1
2

(
1 −1

−3 1

)(
−1 0
0 1

)50 ( 1 1
3 1

)

= −1
2

(
1 −1

−3 1

)(
1 0
0 1

)(
1 1
3 1

)

=
(

1 0
0 1

)

1.10 Solutions of Linear Coupled First Order Ordi-
nary Differential Equations

Consider the following pair of linear coupled first order differential equations:

y′
1(t) = a11y1(t) + a12y2(t)

y′
2(t) = a21y1(t) + a22y2(t)

The equations, in matrix form, can be represented as(
y′

1
y′

2

)
=
(

a11 a12
a21 a22

)(
y1
y2

)
i.e. Y ′ = AY

Let the boundary conditions are y1 = c1 and y2 = c2 i.e. Y (0) =
(

c1
c2

)
Steps:

• Determine the eigenvalues λ1, λ2, ... of the matrix A.

• Find out the corresponding eigenvectors X1, X2, ...

• The solutions of the coupled equations can be written as Y (t) = ∑
i aie

λitXi, where
ai are arbitrary constants.

• Applying the boundary conditions ai can be determined and exact solution is ob-
tained.

Let us consider the following set of equations:

y′
1 = 2y1 + 3y2

y′
2 = 4y1 + y2

The given initial conditions are y1(0) = 2, y2(0) = 1. The equations, in matrix form, can
be represented as (

y′
1

y′
2

)
=
(

2 3
4 1

)(
y1
y2

)
i.e. Y ′ = AY

c⃝Dr. P. Mandal
M: 8902442561

24



where A =
(

2 3
4 1

)
. The eigenvalues of the matrix A are λ1 = −2 and λ2 = 5.

Corresponding eigenvectors are X1 =
(

3
−4

)
and X1 =

(
1
1

)
respectively.

Thus, the general solutions are

Y (t) =
∑

i

aie
λitXi

⇒
(

y1(t)
y2(t)

)
= a1e

−2t

(
3

−4

)
+ a2e

5t

(
1
1

)
or, y1(t) = 3a1e

−2t + a2e
5t

and y2(t) = −4a1e
−2t + a2e

5t

Applying the initial conditions,

y1(0) = 3a1 + a2 = 2
y2(0) = −4a1 + a2 = 1

Solving these equations, we have a1 = 1 and a2 = −1. Hence, the exact solutions are

y1(t) = 3e−2t − e5t

y2(t) = −4e−2t − e5t
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