
C Programming

Susanta Mandal

Assistant Professor

St. Paul’s C M College

Kolkata-700009

Learning Objectives

• Learn how to write and compile a C program

• Learn what C libraries are

• Understand the C variable types

• Understand Input/ Output statement

• Understand how to use if and if/else statements

• Understand how to use the for structure

• Understand the use of Array structure

Some Things About C

• Case matters, white space does not

• Comments go between /* and */

• Each statement is followed by a semicolon

• Execution begins in the main function:

int main(int argc, char* argv[]) { /* ignore this */

/* start here */

return 0; /*end here */

}

Why C Language?
• C is small (only 32 keywords).

• C is a general purpose high level language.

• C is machine independent.

• C is Powerful, flexible and structured.

• C is common and suitable (lots of C code about).

• C is stable (the language doesn’t change much).

• C is quick running.

• C is the basis for many other languages (Java, C++, Perl).

• It may not feel like it but C is one of the easiest languages
to learn.

• C combines the features of high-level language and the
elements of assembler

Introductory terms of C Language

• Some words that will be used a lot:

– Source code: The stuff you type into the computer. The

program you are writing.

– Compile (build): Taking source code and making a program

that the computer can understand.

– Executable: The compiled program that the computer can

run.

– Language: (Special sense) :The core part of C central to

writing C code.

– Library: Added functions for C programming which are

bolted on to do certain tasks.

– Header file: Files ending in .h which are included at the start

of source code.

More about Hello World

#include <stdio.h>

/* My first C program which prints Hello World */

int main (int argc, char *argv[])

{

 printf ("Hello World!\n");

 return 0;

}

Preprocessor

Library command

main() means “start here”

Comments are good

Return 0 from main means our program

finished without errorsBrackets

define code blocks

C doesn’t care much about spaces
#include <stdio.h>/* My first C program which prints Hello World */

int main(){printf("Hello World!\n");return 0;}

#include <stdio.h>

/* My first

C program

which prints

Hello World */

int

main

(

)

{

printf

(

"Hello World!\n"

)

;

return

0

;

}

Both of these programs are exactly

the same as the original as far as

your compiler is concerned.

Note that words have to be kept together

and so do things in quotes.

In the next lecture we'll learn how we

SHOULD lay out our C program to

make them look nice

Keywords of C

• Flow control (6) – if, else, return, switch,
case, default

• Loops (5) – for, do, while, break, continue

• Common types (5) – int, float, double, char,
void

• Some Structures (3) – struct, typedef, union

• Counting and sizing things (2) – enum, sizeof

• Some useful types (7) – extern, signed,
unsigned, long, short, static, const

• Evil keywords which we avoid (1) – goto

• Wierdies (3) – auto, register, volatile

Types of variable

• We must declare the type of every variable we
use in C.

• Every variable has a type (e.g. int) and a name.

• We already saw int, double and float.

• This prevents some bugs caused by spelling
errors (misspelling variable names).

• Declarations of types should always be together
at the top of main or a function (see later).

• Other types are char, signed, unsigned,
long, short and const.

Naming variables

• Variables in C can be given any name made from
numbers, letters and underlines which is not a keyword
and does not begin with a number.

• A good and meaningful name for your variables is
important

• Ideally, a comment with each variable name helps people
know what they do.

• In coursework I like to see well chosen variable names
and comments on variables (I don’t always do this in
notes because there is little space).

int a,b;

double d;

/* This is

a bit cryptic */

int start_time;

int no_students;

double course_mark;

/* This is a bit better */

The char type
• char stores a character variable

• We can print char with %c

• A char has a single quote not a double quote.

• We can use it like so:

int main()

{

char a, b;

a= 'x'; /* Set a to the character x */

printf ("a is %c\n",a);

b= '\n';/* This really is one character*/

printf ("b is %c\n",b);

return 0;

}

More types: Signed/unsigned,

long, short, const
• unsigned means that an int or char value can

only be positive. signed means that it can be

positive or negative.

• long means that int, float or double have

more precision (and are larger) short means

they have less

• const means a variable which doesn't vary –

useful for physical constants or things like pi or e
short int small_no;

unsigned char uchar;

long double precise_number;

short float not_so_precise;

const short float pi= 3.14;

const long double e= 2.718281828;

A short note about ++

• ++i means increment i then use it

• i++ means use i then increment it

int i= 6;

printf ("%d\n",i++); /* Prints 6 sets i to 7 */

int i= 6;

printf ("%d\n",++i); /* prints 7 and sets i to 7 */

Note this important difference

It is easy to confuse yourself and others with the difference
between ++i and i++ - it is best to use them only in simple ways.

All of the above also applies to --.

Some simple operations for variables

• In addition to +, -, * and / we can also use +=, -=, *=,
/=, -- and % (modulo)

• -- (subtract one) e.g. countdown--;

• += (add to a variable) e.g. a+= 6;

• -= (subtract from variable) e.g. num_living-=
num_dead;

• *= (multiply a variable) e.g. no_bunnies*=2;

• /= (divide a variable) e.g. fraction/= divisor;

• (x % y) gives the remainder when x is divided by
y

• remainder= x%y; (ints only)

Casting between variables

• Recall the trouble we had dividing ints

• A cast is a way of telling one variable type

to temporarily look like another.

int a= 3;

int b= 4;

double c;

c= (double)a/(double)b;

By using (type) in front of a variable we tell the variable to

act like another type of variable. We can cast between any

type. Usually, however, the only reason to cast is to stop

ints being rounded by division.

Cast ints a and b to be doubles

What is a function?
• The function is one of the most basic things to

understand in C programming.

• A function is a sub-unit of a program which
performs a specific task.

• We have already (without knowing it) seen one
function from the C library – printf.

• We need to learn to write our own functions.

• Functions take arguments (variables) and may
return an argument.

• Think of a function as extending the C language to
a new task.

• Or perhaps variables are NOUNS functions are
VERBS.

An example function
#include <stdio.h>

int maximum (int, int); /* Prototype – see later in lecture */

int main(int argc, char*argv[])

{

 int i= 4;

 int j= 5;

 int k;

 k= maximum (i,j); /* Call maximum function */

 printf ("%d is the largest from %d and %d\n",k,i,j);

 printf ("%d is the largest from %d and %d\n",maximum(3,5), 3, 5);

 return 0;

}

int maximum (int a, int b)

/* Return the largest integer */

{

 if (a > b)

 return a; /* Return means "I am the result of the function"*/

 return b; /* exit the function with this result */

}

Prototype the function

Call the function

The function itself

function header

Functions can access other functions

• Once you have written a function, it can be

accessed from other functions. We can therefore

build more complex functions from simpler

functions

int max_of_three (int, int, int); /* Prototype*/

.

. /* Main and rest of code is in here */

.

int max_of_three (int i1, int i2, int i3)

/* returns the maximum of three integers */

{

 return (maximum (maximum(i1, i2), i3));

}

void functions

• A function doesn't have to take or return

arguments. We prototype such a function
using void.

void print_hello (void);

void print_hello (void)

/* this function prints hello */

{

 printf ("Hello\n");

}

Prototype (at top of file remember)

void odd_or_even (int num)

/* this function prints odd or even appropriately */

{

 if ((num % 2) == 0) {

 printf ("Even\n");

 return;

 }

 printf ("Odd\n");

}

void odd_or_even (int);

Function takes and returns

void (no arguments)

Function which takes one

int arguments and returns none

Another prototype

Notes about functions

• A function can take any number of arguments

mixed in any way.

• A function can return at most one argument.

• When we return from a function, the values of the

argument HAVE NOT CHANGED.

• We can declare variables within a function just
like we can within main() - these variables will

be deleted when we return from the function

Where do functions go in program

• Generally speaking it doesn't matter too much.

• main() is a function just like any other (you could

even call it from other functions if you wanted.

• It is common to make main() the first function in

your code.

• Functions must be entirely separate from each other.

• Prototypes must come before functions are used.

• A usual order is: Prototypes THEN main THEN

other functions.

What are these prototype things?

• A prototype tells your C program what to expect

from a function - what arguments it takes (if

any) and what it returns (if any)

• Prototypes should go before main()

• #include finds the prototypes for library

functions (e.g. printf)

• A function MUST return the variable type we

say that it does in the prototype.

What is scope?
• The scope of a variable is where it can be used in a

program

• Normally variables are local in scope - this means
they can only be used in the function where they
are declared (main is a function)

• We can also declare global variables.

• If we declare a variable outside a function it can
be used in any function beneath where it is
declared

• Global variables are A BAD THING

The print stars example

#include <stdio.h>

void print_stars(int);

int main()

{

 int i;

 for (i= 0; i < 5; i++)

 print_stars(5);

 return 0;

}

void print_stars (int n)

{

 int i;

 for (i= 0; i < n; i++)

 printf ("*");

 printf ("\n");

}

This program prints five rows of

five stars

This prints 'n' stars and then

a new line character

Loop around 5 times to

print the stars

Variables here are LOCAL variables

Why global some time ceate problem

#include <stdio.h>

void print_stars(int);

int i; /* Declare global i */

int main()

{

 for (i= 0; i < 5; i++)

 print_stars(5);

 return 0;

}

void print_stars (int n)

{

 for (i= 0; i < n; i++)

 printf ("*");

 printf ("\n");

}

This program only

prints ONE row

of five stars

Variable here is global variable

Debugging

• A good technique for "debugging" code is to

think of yourself in place of the computer.

• Go through all the loops in the program and ask

"what is in each variable?"

• Each time you go through a loop ask "is the

condition met" and "should I continue"

• The factorial program shows how to do this.

Factorial program (with hand execution)

int main()

{

int number= 4;

int answer;

int count;

answer= 1;

count= number;

while (count >= 0) {

answer= answer* count;

count--;

}

printf ("%d! = %d\n",

number,answer);

return 0;

}

number= 4

answer= 1

count= 4

enter while loop

answer= 1*4=4

count=3

enter while loop

answer=4*3= 12

count=2

enter while loop

answer=12*2= 24

count= 1

enter while loop

answer= 24*1= 24

count= 0

enter while loop

answer= 24*0= 0

AHA – I see!!!

More techniques for debugging

• Check missing brackets and commas.

• Check that you put a semicolon at the end of
every line which needs one.

• There must have in some printfs– if you
know what your program is DOING you will
know what it is DOING WRONG.

• Try to explain to someone else what the program
is meant to do.

• Take a break, get a cup of coffee and come back
to it fresh. (Debugging is FRUSTRATING).

