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1. Metric Spaces: Introductory Concepts

1. Definition: Ametric space is an ordered pair (X, d) where Xis any nonempty set
and d: Xx X— Rxq Is amapping satisfying

a)d(x,y) = 0 ifand only ifx = .

b)d(x,y) = d(y, x) forall x,y in X

c)d(x,y) + d(y,z) = d(x, z) forall x,y, zin X.

The mapping d: Xx X— Rxq satisfying a), b), ¢) is called ametric on X

If there is no ambiguity over the metric d then simply we call Xis a metric space.

Amapping d: Xx X— Ryq satisfying b), c), and a’): d(x,x) =0 for all x is
called a pseudometric on Xand then (X,d) is called a pseudometric space.

2. Examples: Some familiar examples of metric spacesare

1.Let X=R" u isdefinedbyu(x,y) = *V3L (xi— y;)2 for x=
(X1, X2, ..Xn) € R"and y = (y1, 2, ..yn) € R".

Thenu(x,y) 2 0V x,y € R".

au(x,y) = 0 ifandonlyifx;=yjvVi= 1,2,...,niffx=y

b)u(x,y) = u(y, X) Vx,y € R"

C) Suppose X = (X1, X2, ..Xn), Y = (Y1, Y25 --u¥n), Z = (21, 22, ..,Zn) € RN

Letaj= x,— Vi, bj= yi—- zvi= 1, 2,..,n.Thenfrom Cauchy -
Schwarzs inequality, >* (aj+ bj)2= 3" (a;)2+ >™ (b)?+ 23"

i=1 = =t —i-=-1—aibi =
(807 + 5 b)7s 2y (a)2.3 (b)2= (V3 (a)? + V3 (
bi)?)
i=1 i=1 i=1 i=1 i=1 i=1

Taking square root both sides of the inequality, u(x, z) < u(x,y) + u(y, z)

showing that u is ametric on R".
3
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This metric is called the Euclidean metric on R"

In asimilar way C" can be shown asametric space with the Euclidean metric
defined asfollows:

2. C" with the metric u defined by u(x, y) = ¥¥ ™ [x;— y |2 for x=
(X1, X2, ..Xp) € C"and y = (y1,Y2, ..yn) € C".

3. Given any non empty set X, let d be defined by d(x, y) = 0 ifx =
yinXand = 1ifx# yin X

Thend(x,y) 2 0V X,y € X.

it can be easily verified the defining conditions a) and b) of a metric. To establish
c) we observe that for all x,y,zin X d(x,y) + d(y,z) =0 (f x=y= 2)=
d(x,z), = 1(ifnotallx,yzare equal) = d(x, z) .

Sod is ametric on Xcalled the discrete metric and Xis called a discrete metric
space.

4.Suppose X= CJa,b], and pis defined by p(x,y) = sup{|x(t) — y(t)]: t
€ [a, b]} forall x,y in C[a, b].

Then it can be easily verified that p is ametric on C[a, b], called the supremum
metric or uniform metric.

5.For X=1* = set of all bounded sequence of real or complex numbers,
d. defined by d.(X, y) = sup{|xn, — ynl: n € N}for all x = (Xp)n, Y
= (yn)n in [”is a metric

6.Letl < p < «. Consider the set IP of all sequences (x,), of real orcomplex
1

numbers suchthat 3 ;- 1|Xp|P < <. Definedy(x, y) = (2° |Xn -
Yo 2P x = (Xn)n, y= (Yn)n in IP. Thend, is ametric or'fP.

7. If (X, d) is ametric space, then let us define d* on Xby d*(x, y) = TJC?(L

d(x,y)
Vv X,y € X. Thend* satisfies a) b) of definition 1.1. To check the triangle

inequality [ c) of definition 1.1 ] we see that the mapping x — % vx = 0 isan
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increasing function in x. Sofor anyx,y,z € X, d(x,y) + d(y, z) =2 d(x,z)

=l (x,y)+ d(y.z)

1+d(xy)+d(y,z) d(x,z

) 1+d(x,z

)_, _d(xy) d(x,z . .
Trdey) T 197 = =d*(x,y) + d*(y, 2)

d*()%, z) for alr¥% in X 2
Thus d* is a metric on X

Using the method used to establish triangle inequality in example 7, we can
show that

8. Suppose Xbe the set of all real or complex sequences. Forx =
(xn) and y = (yn) € Xletusdefine p(x,y) = ann('x”'y”'

Then pis ametric on X. )
1.3. Property: If (x, d) isametric spaceand x, y, zare in Xthen
|d(x, z) = d(y, 2)| £ d(x,V) ......(1)

The proof follows from the Triangle inequality in the defining conditions of a
metric and the symmetry in (1) between xand y.

1.4 Example of pseudometric space:
1.For X= C[0,1], if pis defined by p(x,y) = inf{|x(t) - y(t)|: t € [0,1]}

for all x,yin C[0,1] then pis apseudometric on X.

5.Definition: Givenametric space X,ifa € X;r > 0 thenB,(a) = {x€
X:d(x, a) < r}is called the open balll

and B;[a] = {x € X d(X, a) < r}is called closed ball with center a and radiusr.

6. Definition: Asubset Sof a metric space Xis said to be open in Xif for every

a € S,thereissomer > 0 suchthat B,(a) is a subset
of S.

Asubset Fof Xis said to be closed in Xif X\F is openin X

Apoint x in ametric space (X, d) is said to be anisolated point if {x} is an open set
in X. (X, d) is said to be discrete if every point is isolated.

5
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7.Proposition: In any metric space (X, d), every open ball is an open set and
every closed ball is a closed set.

Proof: Supposea € X, r > 0 where (X d) isametric space. We shall showthat
B.(a) isopenin(X d).

Letp € B,(a). Thend(p, a) < r.Chooser, = r - d(p, a). Thenr; > 0.

Nowifx € B, (p) thend(x,a) <= d(x,p) + d(p,a) < r; + d(p,a) =r.So
B, (p) € B((a). Hence B,(a) is openin (X, d).

To show that B,[a] is aclosed setin (X, d) we seethat if p € X\ B,[a], then
d(p,a) > r.Chooser; = d(p,a) - r > 0. Thenforanyx € B, (p), d(x, a)
>= d(p,a) - d(x, p) > r showingthat B,,(p) S X\ B/[a]. SoX\ B,[a] is
open and hence B,[a] is aclosed set in (X,d).

8.Examples: a) In the Euclidean metric space R any open ball with center a is
Bs(a) = xe R:|x — a| < 8= (a - d,a + &) andthe closed ball is Bs[a]
= [a- §,a+ 0] which are respectively the open and closed intervals in R.

b)If d be the discrete metric asdefined in example 3 of 1.2 then every singleton
subset is open aswell asaclosed set as for every x € X, {x}= Bu(x) =B1[X].

2 2
c) The metric space (X, d) given in example 3 of 1.2 is adiscrete metric space.

1.9 Theorem( Hausdorff property): For any two distinct points a, b ina
metric space (X, d) there are two open sets Uand Vin X having the property:

a€ UbeVun V= 0@.In other words any two distinct points can be
separated by open sets.

E’br)oof: Sincea # b d(a, b) > 0. Letr %a’b) ,U=,B(a)and V3 B

Then U and V serve the desire property.

1.10 Properties of open and closed sets: In any metric
space (X, d)

a) Arbitrary union of open setsis agasin an openset.
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b) Finite intersection of open sets is an openset.

c) GS Xisopen in Xifand only if Gis the union of some open balls.

Using De Morgan’s law on complementation of sets|i.e. complement
of arbitrary intersection of sets is the arbitrary union of complement of the sets
and complement of finite union of sets is the finite union of complement of the
sets Jwe can prove that

d) Arbitrary intersection of closed sets is again a closed set.

e) Finite union of closed sets is a closedset.

Proof: a) Suppose {G,: a € [} be afamily of open setsin (X, d). We shall show
that Uqe r G, Iis alsoopen.

If X € Uge r Gothen x € Ggfor some B € . Since Ggis an open set, there is an
r > 0 suchthat B/(x) € GgE Uge r Ga- SOUge Gy is open.

b) Suppose {Gi:1 € {1, 2,...,n}} be afinite family of open sets in (X, d). We shall
showthat N, G; isalsoopen. Ifx € N2, Gthen x € Gfor alli. Gbeingan
open setthere issomer; > 0 suchthat B, (x) & G;. Chooser = min {ri: i =
1,2,...n}> 0.ThenB,(x) € GjVi= 1,2,...,n which implies B,(x) S-Q"

Son"  Giisopen. Gi

c) If Gis the union of some open balls then each open ball being an open
set from (a) it follows that G is an open set. Conversely if GS Xis open in X
then G= Uge gBr, (9) for some rq > 0.

1.11 Definition: In ametric space (X, d) asubset A <
Xis said to be a neighbourhood of a point a in Xifthere is a positive

real number r such that a € B,(a) € A.In that caseais said to be aninterior
point of A. The set of interior points of a subset A of Xis called the interior of Aand
is denoted by inty(A).

Apoint p is said to be an accumulation point of asubset Aof the metric space
(X, d)if foreachr > 0, B';,(a) N A# @. The set of all accumulation points of Ais
called derived set of Aand itis denoted by A
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Apoint p is said to be an adherent point of a subset Aof the metric space (X, d)
if for eachr > 0, B,(a) N A# @. The set of all adherent points of Ais called
closure of Aand it is denoted by cly(A).

12. Remark: Inametric space (X, d) for eacha € X

the countable family N(a) = {B.(a) : r is a positive rational }
forms a neighbourhood base at a. In that sense every metric space is afirst
countable topological space.

The following are straightforward from the definitions:
13. Properties: In any metric space (X, d)
a) intx(®) = 0,intx(X) = Xclx(@) = 0, clx(X) = X
b) G< Xis open in Xifand only if G = intx(G).
c) intx(G) is the largest open set in Xcontained in G.
d)intx(G) = U {Ac G: Ais an open subset of X}.
e) Forany AC X clx(A) = Au A9,
f) Forany AC X clx(A) is the smallest closed set in Xcontaining A.
g)ForanyA € X, Ais closed in Xifand only if A= clx(A).
h) Forany AS X Adis a closed set in X
) Forany AC X clx(X\A) = X\intyx(A) and intx(X \A) = X\clx(A).
j) For any Ac X B c X

() Ac Bimplies intx(A) € intx(B), clx(A) € clx(B) (ii)intx(A N B)
= intx(A)N intx(B), clx(A U B) = clx(A) U clx(B).
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14.Definition: Asubset AC Xis saidto be aGgset (Fy set) if it canbe
expressed asa countable intersection( union) of open(closed) subsets of (X, d).

15.Definition: Afamily B of open subsets of ametric space (X, d) is saidto be a
base for open sets if every open set can be expressed asaunion of some
members(possibly void) of B.

In ametric space (X, d) the family of open balls is a base for opensets.

16.Definition: In a metric space (X, d) a point ais said to be a boundary point of
Ac Xifa is neither an interior point of Anor an interior point of X\A. The
set of boundary points of Ais called boundary of Aand is denoted by bdx(A).

17. Distance between sets and diameter:

Let (X, d) be ametric space, AC X, B © X x € X Thedistance between Aand
B denoted by d(A, B)is d(A, B) = inf{d(p, q) : p € A g € B}. Thedistance
between Aand the point x denoted by d(x, A)isd(x, A) = inf{d(x, p) : p € AL
The diameter of Adenoted by diam(A) or d(A) is diam(A) =sup{d(p, q): p €

A q € AL

The subset Ais said to be bounded if diam(A) is finite. Otherwise it will be
unbounded.

18. Properties: In ametric space (X, d) if A X,B<S X p € X then
(i)p € clx(A) ifand only ifd(p, A) = 0.

i) A€ B=d(A) < d(B).

(i) d(clx(A), clx(B)) = d(A, B).

(iv) d(clx(A)) = d(A).

() d(AU B) < d(A) + d(B) + d(A, B).

Proof: (i) Supposep € clx(A). Thenforanyd > 0 Bs(p) N A% @.Ifa €
Bs(p) N Athend(p, A) < d(p, a) < dimpliesd(p, A) = 0. Conversely if
d(p, A) = O0thenforanyd > 0, thereissomea € Asuchthatd(p, a) <
§ . Evidentlya € Bs(p) N A.Sop € clx(A).
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() Thisis trivially follows from the definition.

(iySince A € clx(A), B < clx(B) from the definition and the property of infimum,
it is clear that d(A, B) = d(clx(A), clx(B))....... (1). Now for any & > 0 and for any

X € clyA), y € cl{B) there area € A,and b € B suchthat d(a, x) <—
ggb y) < ® Thend(a, b) < d(a, x) + d(x, y) + d(y,b) < d(X,y) +

2
d(A,B) < d(a, b) < d(x,y) +E . Taking infimum over X,y we

d7e1(A), ciB)) + 5> d(A, B). Sinced > 0 isarbitrary, d(gl (A), &l (B))
5(A, =) TS (2) From (1) and (2) it follows that d(clx(A), clx(B)) = d(A, B).

(iv) Clearly d(clx(A)) = d(A). .......... (3) Now for any & > 0 and for any x €
clA), y € cl{A) there area € A,and b € Asuchthat d(a, x) <—6 ,d(b, y)
6<Tgen d(x y) < d(x, a) + d(a, b) + d(b,y) < d(a, b) - Sod(cl)gA)<
%ﬂ% b) + Taklng supremumover a, b we get d(cI (A)) < d(A,B) +

0>0is arbltrary, d(clx(A)) < d(A, B)............ (4) From (3) and (4) it foIIows that
d(clx(A), clx(B)) = d(A, B).

(v) Nowforanya, b € AU B, there are three cases:
1.1fa,b € Athen d(a, b) < d(A) < d(A) + d(B) + d(A, B).
2.a,b € Bthend(a,b) < d(B) < d(A) + d(B) + d(A, B).

3.a€ Ab e Bthenforany x € Ay € B, d(a,b) < d(a,x) + d(x,y) +
d(y,b) = d(A)+ d(x,y) + d(B).

Taking infimum over a € A,b € B inleft side and over x € A,y € B right side
we obtain the desireresult.

19. Definition: Given anonempty set X, two metric d and d; are said tobe
equivalent if every open setin (X, d) are open in (X, d,) and vice versa.

20. Property: Thefollowing are equivalent for two metric spaces (X, d) and (X, m)
() Two metrics d and m on a set Xareequivalent

(i) There are two positive numbersr; and r, such that for all x,y in X

10
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rid(x, y) < m(x,y) < rp d(x, y).

(it There is apositive number ¢ such that for all X,y in X

%d(x, y) < m(x,y) < cd(x,
y)-

1.21 Examples: (a) Given any metric space (X, d) the bounded metrics d, and

dafined by d; (X, y) :1+dd(+,§) for all x,y in X

)
and d,(x, y) = min{l, d(x,y)} forall x,yin Xare equivalent with d.

(b) OnR" the two metrics p*and p* defined by, p* (X,y) = |x1 — Y1l
X2 = yo| + ..+ |Xn = Yyl +

and p*(x,y) = max{|x1 = yil, Ix2 = Val, ... |Xn = yn|} aretwo
equivalent metrics.

22. Metric subspace:

Suppose Ybe a nonempty subset of ametric space (X,d). Then the restriction
mapping of d on the set Yx Yis indeed ametric on Y. The metric space (Y, d) is
called a metric subspace of (X, d).

23.Remark: In ametric subspace (Y, d) asthe metric d is the restriction of
original metric d of (X, d) the open and closed balls in (Y,d) are precisely the
intersection of Ywith the open and closed balls of (X,d) respectively . Also the
open and closed sets in (Y,d) are precisely the intersection of Ywith the open and
closed sets in (X, d) respectively.

24 .Example: The metric subspace N of the Euclidean metric space Ris a
discrete metric space.

2. Completeness Property of Metric
Spaces

11
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One of the most important property of afirst countable topological spaceis
the its closed sets can be described by the convergence of the sequences from that
set. We shall now discuss about the convergence of a sequence in ametric space.

1.Definition: In a metric space (X, d) a sequence (x,),, is said to converge to a
point x € Xif for every € > 0 there is a positive integer ng suchthatn = ng =
d(xp, X) < €.

Asequence (X,)n, is said to be covergent if it convergesto apoint x in X.

Asequence (Xn)n is said to be a Cauchy sequence if for every € > 0 there isa
positive integer ng suchthatn, m = ng = d(x,, Xn) < €.

2.Note: If asequence (X,)n is convergent then it convergesto aunique
point(due to Hausdorff property of the metric space ). The point is called the limit
of the sequence (x,), andwe denoteitby lim x, .

n—

Also we often write x, — X if (X,), converges to X.

2.3 Properties: In ametric space (X, d) if A X,x € Xy € Xthen

(i) If (xn)n is convergent then it is a Cauchy sequence.

(ii) If (xn)n is convergent then every subsequence of (x,,)n is convergent.

(iii) If X, > x and y, —y then d(xp, yn) —d(X, y).

(iv) x € clx(A) ifand only ifthere is a sequence (x,) in Asuchthat x, —X.

(vV)x € (A)difand only ifthere is a sequence (x,) in A\{x} suchthat x, — X.

2.4 Theorem: In ametric space (X, d) if a Cauchy sequence (x,)n has
a convergent subsequence then the sequence (x,,),, isconvergent.

Proof: Suppose (x,)n be a Cauchy sequence which has a convergent subsequence
(Xn,), - Let(xy,), converges to x. Thenfor each e > 0, apositive integer

k, such that d{x,.x ) < ®for n, m 2,k . Also there is a positive
kn;[%ecrh that d(X. ,x) <§£ forr 2 k. Choosek = max (p,,ky), thenn 2 k =

d(Xn, X) < d(Xn, Xpn,) + d(Xn,, X) < €.
2.5 Theorem: In ametric space (X, d) every Cauchy sequence is bounded.

12
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Proof: Suppose (x,)n be aCauchy sequence. Choose a positive integer
k such that d(x,, Xm) < 1 forn,m 2 k.

Letb = 1 + max{ d(x,, Xm): n,m < k}. Thend(Xp, Xm) < b forall n, m.

The structure of the metric space will be very concrete in study of many
interesting problems of mathematical analysis if we impose some extra property
namely completeness.

6.Definition: Ametric space (X, d) is said to be complete if every Cauchy
sequence in (X, d) is convergent in (X, d).

Ametric space (X, d) is said to be incomplete if it is not complete.

The completeness axiom for the real numbers is equivalent to the
completeness of the metric space R and from this we conclude that R" is also
complete. Some nontrivial examples of complete metric spacesare:

7. Examples:

(@Theset X= CJ[0,1] with the metric p defined by p(X, y) = sup{|x(t)
- y(t)]:t € [0,1]} for all x,y in C[0,1] is acomplete metric space.

Proof: Let(f,), be a Cauchy sequence in C[0, 1]. Then for every € > 0

there is apositive integer ng suchthat n, m = ng = p(f,, f,) < €. Thisimplies
sup{|fa(t) - fm(t)]:t € [0,1]} < € forn,m = ng . Thus|f,(t) — ()] <

e for every t € [0,1] and for n, m = ng . Sothe sequence is uniformly
convergent in [0, 1]. Sincethe uniform limit of a sequence of continuous
functions is also a continuous function the sequence (f,,), is convergent. SoC[0,1]
Is acomplete metric space.

(b) If Eisameasurable subsetof Rand1 < p < «,LP= {fE—>R:
fis measurable and |f|P is integrable over E} (with the assumption

thatf= gin LPifff= g a.e.onE)then p defined by p(x, y) =

1
(JIx = y|P)r for all X,y in LPisametric on LP and from Riesz- Fischer theorem
it can be shown that LP is acomplete metric space.

13
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2.8 Some Examples of Incomplete metric spaces:

(@) The Euclidean metric space Q is an incomplete metric space.

(b) For X= C[a,b], the metric p defined by p(x, y) =afb |x(t) = y(t)] isan
ﬁilt:omplete metric.

(c) Weierstrass’s theorem tells us that the set P[a, b] of all real valued polynomial
functions on [a, b] with respect to the supremum metric is an incomplete metric
space.

In fact, the following is the characterisation of a subspace of a complete
metric space to become acomplete metric space.

2.9 Properties:

(1) Suppose (X, d) be acomplete metric space and M be anonempty subset of
X. Then the metric subspace (M, d) is complete if and only if M is a closed subset

of X

Proof: If M is complete then any sequence (x,),, in M which converges to apoint
X € X, X can not be outside of M. SoM s closed.

Conversely if M is a closed subset of (X, d) and if asequence (x,,)n is Cauchyin M
then it is Cauchy in (X, d) also. Xbeing complete, (x,),, convergesto apoint x in
X. Then x is an adherent point of M. M being closed, x must be in M. SoM is
complete.

(2)If (X, d) and (Y, p) are two metric spaces, then the product space Xx Yis
complete if and only if both Xand Yare complete metric spaces.

Proof: The result follows from the fact that two sequences (x,,), in Xand (yn)n
in Yare Cauchy (convergent)sequences in the respective metric space if and onlyif
(Xn, Yn)n is Cauchy (convergent)sequence in XxY.

(3)(Cantor’s intersection theorem): Let (F,),, be acontracting sequence of
nonempty closed sets in ametric space (X, d ) such that diam(F,) — 0 asn —
«, Then (X, d) iscomplete if and only if N, F, is asingleton set.

Proof: First assume that Xis complete. Let (F,,),, be acontracting sequence of
nonempty closed sets in ametric space (X, d ) such that diam(F,) — 0 asn —

14



Lecture Notes on Metric Spaces, G. ADAK

«, For each index n selectx, € F,. Weclaim that (x,,),, is aCauchy sequence.
Indeed, for each e > 0O ,there is ng € N suchthat diam(F,,) < €. Since
(Fn)n is contracting if n, m = ng then x,, Xm € Fp,and d(x,, Xy) <
diam(F,,) <

€. Since Xis complete (x,),, convergesto some x € X However for each index

ANgthes yloketiagt e K {$dn Nz M, sdtren diarr(He) aldix,.S0rv; B leadgto
g contradiction.

To prove the converse, suppose that for any contracting sequence (F),, of
nonempty closed subsets of X there is a point x € Xfor which N, F, = {X}. Let
(Xn)n be aCauchy sequence in (X, d). For eachindex
n, let F, be the closure of the nonempty set {x: k =2 n}. Then (F,), isa
contracting sequence of nonempty closed sets. SoN, F, = {x}for somex € X
Clearly then (x,,) convergesto x. Therefore Xis complete.

Roughly speaking a metric space fails to be complete because it has “holes”. If
Xis an incomplete metric space, it can always be suitably minimally enlarged to
become complete.

10.Definition: Giventwo metric spaces (X, d) and (Y, p) amapping f: X— Yis said
to be an isometry from Xinto Yif d(p, q) =

p(f(p), f(q)) for every pair p, q € X Xand Yare said to be isometric if there is
anisometry from XontoY.

Acompletion of ametric space (X, d) is acomplete metric space (Y, p)
such that there is anisometry ffrom Xinto Yand f(X)is dense inY.

The following theorem ensures that there is a completion of a metric space
which is unique in sense ofisometry.

11. Theorem: Every metric space has acompletion. Also if (X, p) and (>?L P1)
are two completion of ametric space (X, d) then they are isometric.

Proof: Suppose (X, d) be ametric space.

Step 1. Let X denote the set of Cauchy’s sequences on X. Let us define arelation
~onXby (Xp)n ~ (Yn)n if lim d(X,, yn) = 0. Then ~ is an equivalence relation

nN—

on X. LetX= X'/~ be the set of equivalenceclasses.

15



Lecture Notes on Metric Spaces, G. ADAK

Step 2. Let usdefine p : Xx X— R by
for all (Xn)n, (Yn)n in_X, p((Xn)n, (Yn)n ) = rI]iLnood(Xn,Yn)-

The mapping is well defined. It is aroutine matter to check that p is ametric onX.

Step 3. We shall now show that Xis acomplete metric space.

Let (xM) , mbe aCauchysequence in X. Thenp ((>§1'°}1 ,(mq}]) —0asp,q

—
w "

Also for eachm, (x"), ,, is a Cauchy sequence in (X, d). Sowe may assumethat
d(xT,,x") < 2% for eachn.Lety, = xI'. Theny = (¥ ), is a Cauchy sequence in

(X, d)indeed d(yp, Yo = d(x, %) —0as p,q —=. Alsopl(x™) ,y)
0’as m — ~ implies (xT)y,, is convergent.

Step 4. Suppose f: X— X be the mapping defined by f(x) =
(X)n, the constant sequence.

Thenfor x, y in X, p(f(x), f(y)) = lim d(x, y) = d(x, y) implies f is an

nN—

isometry.
Also for eachx = (x;)n in X, and for eache > 0, there is k € N such that

d(x,, Xm) < €forn, m = k.Letx = X,. Then f(x) = (x ) € B¢(X) implies
f( X) is dense in X

Consequently_X is acompletion of X.

Step 5. Let (_Xl, p1) be another completion of Xwhere g: X— X be an isometry
with g( X) dense in X;. Wehave to define amapping m from X onto X; which
will be anisometry. Pick anyXrom X. There is a sequence (f(xn)) in f( X)

n

converges to xf(x,) being a constant sequence, p(x,, ¥ —0 as n — «,

This implies (x,) | is aCauchy sequence in (X, d). Then (g(x,)) is aCauchy
— — n
sequence in (X1, p1). X1 being complete, (g(x,)) converges to some’; .
n

Denote by 11(X).

Then 11 is well defined. It can be easily shown that 1T is anisometry

16
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between Xand X;.

Baire’s Category Theorem

The concept of first and second category are ways of describing in acertain
sense, the size of ametric space. They are based in turn on the concept of a
nowhere dense set.

12.Definition: Asubset Aof ametric space (X, d) is said to be nowhere dense set
in Xif intx(clx(A)) = @. In other words the closure of Adoes not contain a
nonempty open set.

13.Examples: (i) Everyfinite subset of the Euclidean metric space R is a nowhere
dense setin R.

(iIn ametric space (X, d) any set consisting of a convergent sequence (with or
without limit) is anowhere denseset.

(i) The set of rational numbers Q is not a nowhere dense setin the set R with
Euclidean metric.

(v)The set of irrational numbers is also not anowhere dense set in the set R with
Euclidean metric.

(v)The Cantor’s set (constructing by removing middle 1/3 open interval in each
step from [0, 1] ) is an uncountable subset of [0, 1] which is anowhere dense set.

2.14 Properties : In ametric space (M, d) (i) an open subset Ais dense in (M, d) if
andonlyif M\ Ais nowhere dense in (M, d).(ii) If M has no isolated point then
closure of adiscrete set is anowhere dense set. (iii) the boundary of an open setis
closed and nowhere dense. (iv) every closed nowhere dense set is the boundary of
an open set.

Proof: (i) M \ Ais nowhere dense in (M, d) & inty( cly( M\A)) = ¢ & M\
clu(A) = 0o (cly(A)) = M Aisdense in M.

(i) Let Dbe adiscrete subset of M. Suppose Dis not a nowhere dense set. Then we
have anonempty open set U € cly(D). There must be anelementa € UN D.
Then there exists anr > 0 suchthat B,(a) € U and contains no other points of D.

17
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Since M has no isolated points, there isay # a in B,(a). Then every open ball
centred y must intersect D, contradicts that Disdiscrete.

(iii) Let Ube an open setin (M, d). Then bdy(U) = cly(U) \ inty(U) =
cly(U) \U is aclosed set. Alsoif Ais a nonempty open set contained in
bdy(U) then there issomey € Ud N A. SinceAis open there issome

r >

0 suchthat B,(y) € Ac cly(U) \U acontradiction. Sobdy,(U) is nhowhere
dense set.

(iv) Suppose Fbe a closed nowhere dense subset of M. LetU= M\F. ThenUis a
dense open setand F = M\U = cly(U) \U = bdy(U).

2.15 Definition: Asubset of a metric space is of (i) the first category if it
IS expressible asacountable union of nowhere dense sets.

(i) the second category if it is not of the first category.

We shall now state the theorem which is known as Baire’s category theorem.

Pri0t BEHGED of R COMRIRHREIHE SRApe R matheLraRdRY-d) is a
countable union U, A, of nowhere dense sets. We begin a construction which
leads us to acontradiction. A; being nowhere dense, it will be disjoint from aball.
We can take it to be aclosed ball S; of radius < 1. A, being nowhere dense, it will
be disjoint from aball. Sothere is a closed ball S, of radius < % and S, €

S;and S, N A,= @. Continuing in this way we get a descending sequence (Sp)n
of nonempty closed balls with S, N A, = @ and radius(S;) Sin . ByCantor’s

intersection theorem there isapointy in N, Sy . But y liesin none of A,’s,
contradicting the hypothesis that M= Uy An.

17.Note: Completeness property is ametric property i.e. preserved under any
iIsometry, whereas second category property is atopological property. Sothe
theorem is alink between metric property and topological property.
18. Examples: ( a) The set of rational numbers Q is of first category.

(b) Denumerable union of first category subsets of a metric space is also of
first category.

18
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(c) From Baire’s category theorem it can be deduce that the set of irrational
numbers is a set of second category.

3. Continuity on Metric Spaces

1.Definition: Afunction f: (X,d) — (Y, p) is said to be continuous at a point a € X

if for every positive € there is a positive § such that d(x, a) < § implies p(f(x), f(a)) <

€. Afunction f is continuous on X; if it is continuous at every point of X,

Since a metric space is first countable the continuity of afunction at a point can be

characterised by sequential criteria:

2.Theorem: Afunction f: (X,d) — (Y, p) is continuous at a point a € Xif and

only if

((jf(xn)) converges to f(a) in (Y, p)when every (x,)n converges to a in (X,
n

Proof: If f is continuous at apointa € Xand (X,), converges to a in (X,d)

then for eache > 0 thereisad> 0 suchthat d(x, a) <é implies p(f(x), f(a))<e.

Then there is a positive integer k such thatd(x,,a) < 6 forn = k. Then

p(f(xn), f(@) ) < efornz kimplies (f(x,)), converges to f(a) in(Y, p).

Conversely if possible let f be not continuous at a . Thenthere issomee > 0

such that for every choice of §> 0 there is xz in Xsuch that d(x:, a) <&but
p(f(x), f(a)) = €. Taking § = ~for eachen, there is a sequencg (x )

Eb?ﬁ/erging to a but (f(xn)) ,does not converge to f(a) in (Y, p) leads

to a contradiction.

3.Definition: Afunction f: (X,d) — (Y, p) is said to be uniformly continuous on X if
for every positive € there is a positive § such that d(x, y) < é implies p(f(x), f(y)) < €
for any two x,yin X

From the definition it is clear that every uniformly continuous
function is continuous.

4.  Theorem:Afunction f: (X,d) — (Y, p) is uniformly continuous on Xifand only if

(f(xn)) is a Cauchy sequence in (Y, p)when ever (x,), is a Cauchy
seqguence .
n

Proof. Similar to the proof of theorem 3.2

19



Lecture Notes on Metric Spaces, G. ADAK

5.Theorem: If function f: (X,d) — (Y, p) is continuous at apoint a € Xand function
g: (Y, p) — (Z,0) is continuous at apoint f(a) € Ythen their composition gof:
(X, d) — (Z, o) is continuous at a.

Proof. Follows directly from thetheorem 3.2

6. Theorem:for afunction f:(X,d) — (Y, p) the following are equivalent:

(a) fiscontinuous on X.

b) f1(G) isopenin (X, d) for every open set Gin (Y, p).

(© f1(K) isclosed in (X, d) for every closed set Gin (Y, p).

Proof: (a) = (c): If p € clx(f"1(K)) then there is a sequence

(Xn)n in f71(K)converges to p in (X, d). Fromthe continuity of f at p, (f(x,
)n

converges to f(p) in (Y, p). Kbeing closed f(p) € K.So p € (f"1(K)) implies
©

(c) = (b): For every open set Gin (Y, p) Y\G is closed. Then (c) implies
f~1(Y \G) is closed in (X,d ) which implies X\f"1(G) is closed in X So (b)
holds.

(b) = (a): Forevery positive €, B ((f(a)) is an open set containing f(a). Then
f~1(B¢(f(a))) is open set containing a in (X, d). Choose positive § such that
Bs(a) € f71(B ¢(f(a)). Sof(B s(a)) € B¢(f(a) which implies f is continuous at a.

7. Theorem: For any subset Aof a metric space (X, d) the mappingf: X— R

defined by f(x) = d(x, A) for x € Xis auniformly continuous mapping.
Proof: The result follows immediately from the fact that for any x, y

€ X[ f(x) = f(y)| = [d(x, A)=d(y, A)l = d(x,y).

8.Theorem: For any closed subset Aof a metric space (X, d) thereisa
continuous mapping f: X— R such that f(x) = 0 ifand only ifx € A.

Proof: Define f: X— R by f(x) = d(x, A) for x € X From the previous theorem
3.7 fis acontinuous mapping on Xand f(x) = 0 ifand only ifd(x, A) =

0 ifand only ifx € clx(A) = A

9.Remark: From theorem 3.6 and 3.8 it is clear that in a metric space a subset is
closed if and only if it is a zero set.

10. Regularity Property: For any closed subset
Aof a metric space (X,d)and x € X\A there are two open sets Uand Vin

(X, d)such that A< U,x€e Vand UN V= ¢

Proof: Define f: X— R by f(z) = d(z,4) for z € X Thend(x, A)= 2r> 0
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From 3.7 fis acontinuous mappingon X. LetU= f=1(=1, r) and V= f=1(r, 3r).
Then both Uand Vare open sets. ThenAc U,x € Vand UN V= @

3.11 Property: Suppose
Aand B are two disjoint closed subsets of a metric space

(X, d). Then there are two open sets Uand Vin (X, d)such that Ac U
, BS Vand UN V= @(This property is called normal property).

. . . _ d(z.A)
Proof: Define f: X— R by f(Z) = m
is well defined. Also from theorem 3.7 and 3.8 f is continuous function assumes
values 0 on Aand 1 on B. Considering U= f~1 (-1, ;) andV = f—1(; ,2) we

for z € X Aand B being disjoint f

obtain the desireresult.

12.Property: For any metric space (X, d) the function d: Xx X— R isa
continuous mapping.

Proof: Forany( Xg, Yg) € XX X, if asequence (Xn, Yn)n convergesto ( Xq, Yo)
then from 2.3 (iii) (d(xn ,yn)), convergesto d(Xo, Yo). Hence the function d: X
x X— R is acontinuous mapping.

13. Theorem: for acontinuous function f: (X,d) — (Y, p) the graph off
{(x, f(x)): x € X}is aclosed subset of XxY.

Proof: Given any convergent sequence (Xn, f(Xp)),, in Xx Yif lim (x,, f(x,)) =

n—

(a,b) thenx,, — ain (X,d)and f(x,) — b in (Y, d). Continuity of f at aimplies
b = f(a). Sothe graph of f is closed.

14. Theorem: If two continuous functions f, g: (X,d) — (Y, p) agree in adense
subset of X, then they agree in the whole space X.

Proof: The result follows immediately from the sequential criteria.

15.Theorem: Suppose Abe a dense subset of a metric space (X, d) and
(Y, p) be acomplete metric space. Then every uniformly continuous function f: A
— Y can be uniquely extended to auniformly continuous function g: X—Y.
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Proof: We shall draw the sketch of the proof in the following way: since Ais
dense in X for any x € X, choose a sequence (ap), from Aconverging
to X. Then (f(an))n will be a Cauchy sequence in the complete metric space
(Y, p).

Define g(x) = lim f(a,). Then gis well defined. Clearly gextends f. Uniform
n

continuity of gcan be easily established. Uniqueness follows from theorem3.13.

16.Definition: Fortwo metric spaces (X, d) and (Y, p) amapping f: (X, d)
— (Y, p)

is said to be ahomeomorphism if fis bijective , fand f~1 are continuous.

17.Definition : (X, d) and (Y, p) be metric spaces and f: X— Ybe afunction. For a
point a € X and for any positive 6, let us define Q(f, Bs(a)) =

sup{p(f(x), f(y)): x € Bs(a),y € Bs(a)}. Q(f, Bs(a)) is called oscillation of f over
Bg(a).

18. REMARKS: (1) If f is unbouned in any deleted neighbourhood of the point a,
then Q(f, Bs(a)) will be infinity. Sofor abounded function f, Q(f, Bs(a)) must be
finite for every é.

(2) If f is abounded function then the oscillation function Q(f, Bs(a)) is increasing

. —0 . .—0 _ .
. T BN RN A 2@l o e 0>

3.19 Definition: If f is abounded function from ametric space Xto R,and a€ X
then the oscillation of the function f at the point ais defined by I(igrﬂ0 Q(f, Bs(a)) and

it is denoted by w(f, a).

3.20 Theorem: Supposef: (X,d) — (Y, p) be afunction and a € X Thenthe
necessary and sufficient condition for the continuity of f at ais w(f, a) = 0.
Proof: Suppose f is continuous at a. For any positive € there is apositive § such

that d(x, a) <& implies p (f(X), f(2)) <§ . Thenfor any p, g € B (a), p(f(p), f(q)) =
p(f(p), f(a)) + p(f(a), f(a)) < e

SoQ(f, Bs(a)) < € and hence w(f, a) = 0.

Conversely, suppose w(f, a) = 0. Now for any € > 0, there is some positive 0
such that Q(f, Bs(a)) < e.

By definition, p(f(x), f(a)) <€ whenever d(x, a) <4§. Which shows that f is
continuous at the pointa.
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21.Notation: Forafunction f: (X,d) — (Y, p), the set{x €
X:fis not continuous at the point x} is denoted by Ds.

22. Properties: Supposef: (X,d) — (Y, p) be afunction.

Then L
() ThesetD, = {x€ X: w(f x) 2 H}IS aclosed subset of X.

(i) The set Dyis an F4 set.
Proof: (i) If ¥ & Dthen w(f, X } < 15 That is equivalent to inf{Q(f, B @)): §>

0} < El . Sofor anye > 0, there is some positive § suchthat Q(f, B (Xg)) < %
Then for any x € Bs(Xp), choose d;> 0 suchthat Bs, (x) © Bs(Xo) .

Then from the earlier remark Q (f, Bs,(x)) = Q(f, Bs(x9) < Hlimpliesx ¢ D,

ThusBs(xg) N Dy = ¢ which shows that D, is aclosed set.
(i) Observe that D= U°°1 Dy, is the countable union of closed sets.
n=

We want to now focus on our main problem: whether there be areal
valued function defined on Rwhich is continuous at all rational points and
discontinuous at all irrational points. To make the conclusion we will apply Baire’s

Category theorem.
3.23 Proposition: There does not exit afunction f: [0, 1] — R which

is discontinuous only at all irrational points in [0, 1].

Proof: We shall prove this by using contradiction. If possible let there be afunction
f: [0,1] - R

suchthat Df = [0, 1] \Q . From 1.6(ii) Dfisan Fy set. So[0, 1]\Q = U2 F,
where each F, is aclosed set. AsF,, c [0, 1]\Q, it contains no interior point. So
inty(clx(F,)) = ¢ where X= [0, 1] with the usual metric. Consequently each F,

is anowhere dense set. So[0, 1] \Q is aset of first category.

Also [0, 1] N Qis aset of first category. So[0, 1] = ([0, 1]\Q) U ([0, 1]
N Q) is offirst category contradicts the Baire’s categorytheorem.

Therefore no such f can befound.

4  Compact Metric Space and Totally Boundedness
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4.1 Definition: Afamily (Ey) - of open sets in ametric space (X, d) is said to
YE

be an open cover of asubsetE € Xif ES Uyer Ey. Asub collectionof (Ey), . is

called a sub cover of (EY)y crif it is also an open cover of E.

Asubset E € Xis said to be (a) compactif every open cover of E has afinite
sub cover. (b) lindelof ifevery open cover of E has a countable sub cover.

(c)o — compactif every countable open cover of E has a finite sub cover.

4.2 Proposition: Every compact subset of ametric space is closed and bounded.

Proof: Suppose E be a compact subset of the metric space (X, d). If p € E, thenfor

every x € E, choose an open ball B, (x) with center x and an open ball

By, (p) with center p suchthat B, (x) N By, (p) = @. The collection {B;,(x): x

€ E}of open cover of E has afinite subcover {B,, (x;):i€ {1,2,...n}}. IfU =
i”:prXi (p) and V= Y- BrXi(xi) then EC Vand p € Uand UN V=

showiﬂg that p isnota limit point of E which implies E is a closed set.

Now the collection {B1(x): x € E}is an open cover of E which has afinite

subcover {B1(x;): i € {1,2, .., n}}. Clearly then d(E) < n. ThusE is bounded.

4.3 Proposition: For ametric space (X, d) the following are equivalent: (@

Xis compact. (b) If
(Fy) - be a family of closed subsets of Xsuch that intersection ofany finite
'}

subfamily is nonempty then Nyer Fy # 0. Proof:

(a) = (b): If Nyer Fy = @then Uyer(X\Fy) = X where each X\F, is an open set

X Sothe family (X \Fy) - Is an open cover of X Since Xis compact, it has afinite
YE

€

subcover, say there is afinite subset 'y < I suchthat Uyer, (X \Fy) = X which
implies Nyer, Fy = @ leads to acontradiction.

(b) = (a): Suppose (GV)VEF be an open cover of X. Then Uyer Gy = Ximplies
Nyer(X \Gy) = @, where X \G, is aclosed set. So there is afinite subset I'; <
[ suchthat Nyer,(X \Gy) = @ which againimplies Uyer, Gy= X Thus each
open cover has afinite subcover and so Xis compact.

4, Example: R is not compact.
In fact the cover of R by the open sets (-n, n), for n € N, can have no

finite subcover.
5. Proposition: E [0, 1] is acompact set.
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Proof: Suppose (Gv)y <rbe an open cover of land let K be the set of all points ¢ in

kuch that some finite subcollection from (GY)Yercovers [0, c]. Clearly O € K.Also,

ifc € Kandb < cthenb € K. ThusK is a sub interval of kcontaining 0. Moreover,
if c € K, then any finite subcollection from (Gv)y crwhich covers [0, c] also covers

[0,c + € forsome € > O(unlessc = 1, in which case we have finished). Thus K is
an open setin LFinally if k is the right end point of K, then k € K, forpick G;€

(GV)VEF suchthatk € G;. Then (k — €, k] € G;for some € > 0 sothat by adding G;
to a finite subcollection from (GY)y <r Which covers [0, k = €] we obtain afinite

subcollection from (Gv)y crWhich covers [0, k]. Now Kis a closed subinterval of I

which contains O and an open setin LThusK = LThis proves thatkcompact.
6.Theorem: Supposef: (X,d) — (Y, p) be acontinuous function and Xis a
compact metric space. Then f(X) is a compact subset of Y.

Proof. Suppose (GY)Yer be an open cover of f(X). Since f is continuous f~1(G,) is

anopen setin X. So(f"1(G,)) ris an open covering of X. Xbeingcompact,
YE

f—l

(G

sub cover of (Gv)y r-Hence f(X) is acompact subset of Y.

= Xfor some finite subset I'; of I'. Thisimplies (Gy) is afinite
'}

1 ey

The following theorem known as Tychonoff theorem is an important
theorem to construct differentcompact spaces.
7.Proposition(Tychonoff): Anonempty product space is compact if and onlyif
each factor space is compact.
8. Theorem: Every closed subset of acompact metric space is compact.
Proof: Let Ybe a closed subset of acompact metric space (X, d). If (FV)y cr bea

family of closed subsets of Ysuch that intersection of any finite subfamily is
nonempty then F, = YN K, for some closed subset K, of X Soeach F, is closed in
(X, d). Since (X, d) is compact Nyer Fy # @. Hence Y is compact.
9.Proposition(Heine —Borel Property):In the Euclidean metric space R"

a subset Kis compactiff it is closed andbounded.

Proof: Necessary part of this proposition follows from proposition 4.2. For the
sufficiency suppose K be aclosed and bounded subset of R". Then Kis a closed
subset of ann — fold product[-c, c]x[-c, c]x ... X[-c, c] of intervals for some ¢
€
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R. Now each interval [-c, c] is homeomorphic with [0,1] which is compact. So
each such n - fold is compact, by Tychonoff theorem. K being a closed subset of
this n — fold it is compact.

4.10 Theorem: Supposef: (X,d) — (Y, p) be acontinuous function and Xisa
compact metric space. Then f is uniformly continuous.

Proof: Choose € > 0 arbitrarily. Now for each x € Xusing continuity of f, there isa

0,> 0 suchthat for any y € Xwith d(x, y) < &,jmplies p(f(x), f(y)) < . Iglow

the family { Bsx(X): X € X} being an open cover of the compact set Xthere are
2

finite number of points, say X1, X2, .. Xn in Xsuch that {Bs, (xi): 1 = 1,2, ..n} also
2

covers X. Letd = %min{éxlz i=1,2,.n}lLletuve Xand d(u,v) < 6.1fu

€
Bai(xk) then d(x,v) < d(x,,u) + d(u, v) %+ 6%: 5y, - Then
2

p(f(u), f(v)) = p(f(u), f(xy)) + p(f(xy), f(v)) < %+ = ¢ showing that f is

2
uniformly continuous.

11.Theorem: Supposef: (X,d) — (Y, p) be acontinuous bijective function and Xis
acompact metric space. Thenf isahomeomorphism. Proof:
We have only to show that f~1 is continuous. Suppose K be a closed subsetin

(X, d). Thenfrom 4.3 Kis acompact subset of (X, d) which implies f(K) is a
compact setin (Y, p). Hence f(K) is closed in (Y, p). Sof ~1 is continuous.

12. Definition: Ametric space Xis said to be totally bounded if for everye > 0,
there is afinite family of open balls of radius € which covers X. Asubset Y of Xis
called totally bounded provided that Yasametric subspace of X, is totally
bounded.

13. Remark: For asubset Yof ametric space X,by ane — net for Ywe meana

finite family of open balls (Be(xn))k =1 With center x, € Xwhich covers Y.
Consequently ametric subspace Yis totally bounded if and only if there is afinite
€ — net for Y. Also from the existence of finite € — net itis clear that the
diameter of atotally bounded metric space is finite and so every totally bounded
metric space is bounded.

14.Example: Consider the metric space X= 12 of all sequences in Cwhich are
sguare summable.
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1
Here the closed unit ball B ={x= (Xn)n: (Zn= [Xn|? )2 < 1}is bounded. Butfor
eachn € N, ife, = (6k”);< (where ?” is the Kronecker delta) then p(e,, en) =

\Z for m # n. Thus B can not be covered by afinite number of balls radius less
than ¥2. SoB is not totally bounded.

In the Euclidean metric space the following proposition tellssomething
different:
15.Proposition: Asubset of Euclidean space R" is totally bounded if and only ifit
is bounded.
16.Definition: Ametric space (X, d) is said to be sequentially compactif every
sequence in Xhas a subsequence which converges to apoint of X.
17.Theorem: Ametric space (X, d) is totally bounded if and only if every
sequence in Xcontains a Cauchy subsequence.
18. Theorem: In ametric space (X, d) the following are equivalent:
@ Xis complete and totally bounded.
(0 Xis compact.
© Xis sequentially compact.

Proof: (a) implies (b): Suppose on the contrary that (Gv)y cr be anopen  cover

of Xwhich has no finite sub cover. Since Xis totally bounded there is a finite family
of open balls of radius <Y2that cover X At least one of that family can’t be covered
by afinite subfamily of (Gv)y r+ Letus denote the closure of this ball by F;. Again

using totally boundedness of Xthere is afinite family of open balls of radius <¥4
that cover X(and hence coverF;) . At least one of that family whose intersection
with F; can’t be covered by afinite subfamily of (Gv)y r- Letus denote the closure

of this ball by F,. Continuing this process we obtain a descending sequence of
nonempty closed sets (F,),, with diam(F,, ) — 0. Since Xis complete from
Cantor’s intersection theorem, N, F,, is asingleton set which contradicts that no
F, can be covered by finite subfamily of (Gv)y e+ S0(X, d) iscompact.

(b) implies (c): If (xn)nbe any sequence in (X, d) then for every index n, let F, =
cly{xx: k = n}. Then (F,), is adescending sequence of nonempty closed sets and
soit hasfinite intersection property. By compactness of XN, F, contains apoint,
say Xg € X Clearly there is a subsequence of (x,), which converges to Xg.
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(c) implies (a): Since Xis sequentially compact, every sequence in Xhas a
convergent and hence a Cauchy subsequence. From theorem 4.12 it follows
that Xis totally bounded. To show that Xis complete, let (x,,), be aCauchy
sequence. From sequential compactness (X,), has aconvergent subsequence
and so (x,),, itself is convergent.

5. Connectedness:

The metric space version of famous Intermediate Value property of areal
valued continuous function can be proved in a simpler way using connectedness.
Roughly speaking in ametric space (X, d) asubset will be connected if it cannot
be the union of more than one piece of open sets.

1. Definition: Given ametric space (X, d) apair (U, V) of opensets is
said to be aseparation of Xif X = UUu V, U# ¢,V# ¢, UN V= 0.A
metric space (X, d) is said to be disconnected if there is a separation of X. Ametric
space (X, d) is said to be connected if it is not disconnected. Asubset E of a metric
space (X, d) is said to be connected(disconnected) if the metric subspace (E, d) is
connected(disconnected).

2. Proposition: In ametric space (X, d) apair (U, V) of open setsis a
separation of Xiff X = Uu V, U# @,V# ¢,UN cl(V) = cl(U) N V= 0.

Proof: Suppose (U, V) isaseparationof X ThenX = Uu V, U# @,V# Q.

AlsoUN V= ¢ = Uis a subset of the closed set X\ V= cl(U) € X\ V.S
cl(U) N V= @.SimilarlyUN cl(V) = @. The converse istrivial.

3.Proposition: Ametric space (X, d) is connected if and only if it has no
nontrivial subset which is both open andclosed.

Proof: Suppose (X, d) isdisconnected. ThenX = UU V, UN V=20
for some nonempty open sets Uand V.Evidently U= X\ Vis aclosed
set
implies that Xhas anontrivial clopen set. Conversely if Xhas anontrivial clopen
subset say, Uthen Uand X\ Uboth are nontrivial open sets which is a
separation of X, showing that Xis a disconnectedspace.

4. Example: Any set Xwith more than one element is a disconnected space
with respect to discrete metric. Hence the set N of natural numbers with respect to
the Euclidean metric is disconnected.28
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5. Theorem: Suppose (X, d)be ametric spaceand AS B < clx(A). If Aisa
connected subset of (X, d) then B is also connected subset of (X, d).Hence closure
of any connected subset is also a connected subset.

Proof: It is enough to show that clx(A) is connected(sinceif AS B < clx(A) then

B = clg(A) and we can replace Xby B ). Suppose clx(A) = Uu Vwhere
Uand Vare disjoint nonempty open setsin clx(A). ThenA= (UN A)u (VN A)

and the latter are disjoint nonempty open setsin A. Thusif clx(A) is disconnected,
sois A.

6.Proposition: The only connected subsets of R(with respect to Euclidean metric)
are intervals(both proper andimproper).

Proof. Suppose K be a connected subset of R containing more than one point. If
X,y € Kand x< y,and ifz € Rsuch that x< z < y we must show that z
€ K. Forif z ¢ Kthen the pair (U, V) where U= (-»,z) N Kand V= (z, «)
N Kis a separation of K showing that Kis disconnected. Thus Kis an interval.

Conversely if Kis an interval in view of proposition 5.5 it is enough to show that K
is connected if Kis aclosed bounded interval. Suppose K= [0,1], with K= UuV
where U and Vare nonempty disjoint open sets in Kand 0 € U.U being an
open set some open neighbourhood of 0 is contained in U. Soc= infV can not be
0.

Now either ¢ € Uor ¢ € V, and sothere is aneighbourhood of ¢ which is
contained either in U or in V. But any neighbourhood of ¢ contains a point of
U(to the left of ¢) and a point of V(to the right of c).a contradiction. SoK is
connected.

7.Definition: Suppose (X, d)be a metric space. A subset A< Xis said to be path
connected if for any two point a, b € X there is a continuous function f: [0,1] —
Xsuchthat f([0,1] ) € A f(0) = a, f(1) = b.

8. Proposition: Every path connected metric space is connected.

Proof: Suppose (X, d)be path connected. If possible let Xbe disconnected. Then
there is anontrivial clopen subset U of X Supposep € U,q € X\U. Thenthere is
acontinuous function f: [0,1] — Xsuchthat f(0) = p, f(1) = q. Sincefis
continuous, f~1(U) and f~1(X \U) are disjoint nonempty open sets forms a
separation of [0,1] which contradicts the fact that [0,1] is connected. SoXis

nn .
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5.9 Examples: a) R" is aconnected metric space.

b) The graph of the topologists sine curve is connected but not path connected.
Herel = {(x,0): x < 0} U {(x, sin %): x > 0)} is the graph of the function f: R —

0 ifx<0
R defined by f(x) = { i, ( 5) ifx > 0 - 1hesetl isnot pat connected asthe
X

points (0,0) and (1/11, 0) are in I but there is no continuous function f: [0,1] —
[ suchthat f(0) = (0,0) ,f(1) = (1/m, 0). Butl'y = {(x, sin(1/x): x # 0)}is
path connected and hence connected. It can be verified that ', € '
cl(lM).Then [ is connected.

10. Theorem: Continuous image of aconnected space is connected.

Proof: Suppose (X, d) is aconnected metric space and f: X— Yis a continuous
map where (Y, p) is any metric space. Then f(X) is connected as a subspace of

(Y, p). Indeed if (U, V) of open sets is a separation of f(X) then f~1(U) and f~1(V)
are nontrivial open setsin Xand f~1(U) u f~1(V) = Xshowing the
disconnectedness of X.

11. Corollary: If f: [a, b] — R is acontinuous function and f(a) # f(b) then f
assumes every values between f(a) and f(b).

Proof: Since fis continuous and [a, b] is a connected subset of R, from theorem 5.9
f([a, b]) is connected subset of R and so it must be an interval. Hence the result.

6. Fixed Point Theorems and Their Applications.

6.1 Definition: Apoint x in aset Xis said to be afixed point of the mapping T: X
— Xif T(x) = x.

The fixed point of areal valued function of areal variable x corresponds to a
point in the plane where the graph of the function intersects with the liney = x.
Analytically, using intermediate value property, also we can ensure the existence of
afixed point of acontinuous map from [a, b] to [a, b]. Brouwer’s fixed point
theorem ensures that any continuous map from a compact convex subset of R" to
itself has afixed point . In this section our aim is to impose certain conditions on
the mapping to ensure the fixed point in a metric space.
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2.Definition: Given ametric space (X, d) amapping T: X— Xis said to be (i)
Lipshcitz if d(T(x), T(y)) < cd(x, y) for all x,y € X, for some positive real
number c(cis called a Lipschitz constant). (i) acontractive mapping if
d(T(x), T(y)) < d(x,y) forall x,y € X(iii) acontraction if d(T(x), T(y)) <
cd(x,y) forall x,y € X forsome0 < c< 1.

3.Theorem (Banach Contraction Principle): If (X, d) is acomplete metric
space and the mapping T: X— Xis acontraction, then T always has aunique
fixed point.

Proof: Fixany x from X Let us denote this element by xo. Denote T(Xg) by X;.
For any positive integer n , inductively defining x, denote T (x,) by Xn+1 . The
sequence (Xn)n is a Cauchy sequence, follows from the contractive property of T.
X being complete, sequence (Xx,)n is convergent. Suppose lim x,, = z.  Then

n-—

T(z) = T( limx,) = limT(Xp) = lim Xp41 = Z

nN— N— nN—

Unigueness follows from d(z,y) = d(T(z), T(y)) < cd(z, y) cannot be
possible unlessz = .

6.4 Example: Supposef: R — R be defined byf(x) % arctan x V . Then
R :

ﬁ&) - f(y)| = Elltan‘1 x— tan~ly] Szllx -yl ¥XxYy € R.Sofisa

FABEAY A R. By Banach's theorem arctan x = 2x for somex € R.

6.5 Corollary: If (X, d) is acomplete metric space and for the mapping T: X— X

there is apositive integer k such that Tk: X— Xis a contraction, then T always
has a unique fixed point.

Proof: Since Tk: X— Xis a contraction, from Banach’s Contraction Principle Tk
always has unique fixed pointin x € X. Then T¥(T(x)) = T(TX(x)) = T(x)
implies T(x) is afixed point of Tk, From uniqueness property it follows that

T(x) = x. Sox is afixed point of T. Since any fixed point of T is also a fixed point of
Tk x is the unique fixed point of T.

6.6 Example: Supposef: R — R be defined by f(x) = Eﬂ + X— arctan xV X €
Fhen|f(x) - f(y)l = [x- y- (tan"1x - tanly)| < |x - y| VXy € R. Sof
iIsa

contracting mapping on the complete metric space. But f has no fixed point inR.
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6.7 Example: Supposef: R" — R" be a contraction. Letg: R" — R" be defined
byg(x) = x— f(x) Vv x € R". Then g is ahomeomorphism.

Proof: Sincefis acontraction there is some ¢ > 0 suchthat |f(x) — f(y)| <

cx =yl VXxy€e R". Thenforx# yin R"g(x) - g(y) # 0. Sogis
injective. Toshow that g is onto, suppose u € R". Thenthe mappingf,: R" —
R" defined by f,(x) = u + f(x) is acontraction. By Banach’s Contraction
Priciple, f, has a fixed point x in R". Then g(x) = u showingthat g is onto. From
the definition of g it is clear that g and g~1 are continuous. Hence g is a
homeomorphism.

abewarisssiisrenoayfing pineidslutb now deitieed iddliqintgene b ést T =

f(X, y) satisfying certain conditions. Y

6.8 Definition: Suppose fbe acontinuous function a rectangle R= [xp— a,
Xg+ alx[yo — b,y + b]. Areal valued function ¢ defined on an interval | is said

d
L3R of the initialvalue problem — = f(x, ), Y(Xo) = Yo..-v.nn. (1) if
forx € I, f(x, p(x) € Rand @'(x) = f(x, ®(x)) with @(Xo) = VYo.

The following proposition can be easily established.

6.9 Proposition: Afunction ¢ is a solution of the initial value problem (1) on
an interval | if and only if it is a solution of the integral equation @ (x) = yg +

I f @())dx on | ..........(2)

6.10 Theorem (Existence and Uniqueness due to E. Picard): Suppose f
be a continuous function a rectangle R = [xg — a, Xg + a]x[yg — b, yo + b]
satisfying

|f6¢. by 4 %V(%%l), 157163 . anedHnen is afibrioue SoMifRbERN IifereRtidble O.
function @: (xo — h,Xo + h) — R onsuchthat ¢(xg) = yo and @'(x) = f(x,
?(x))

forallx € (Xo— h,xg + h
Proof: Let I(=0[x0 - r?, x042 hljand X= {p € C(I):|o(X) — yol S b}V XxE€

l. Letusdefine T: X— C(l)
by T(@)() = v+ I fx @()dx, v xe
Since C(1) is complete and Xis a closed subspace of C(l), Xis also complete.
Alsofor eachg € X|T(p(x) - y| = Xxof(x, ¢(x))dx | £ hK < bimplies T(X)
% Toshow that T is a contraction observe fhat for P1, P2 € X |T(p1(x)) -
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T(@200)] 11,706 @ £x))dx = [ f(x, 92(x))dx| < Mhp(@1,92) where pis
the supremum metric on C(l). By Banach Contraction Principle T has a unique
fixed point @ € X. Clearly ¢ isthe desired function.
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