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1 Introduction

Recall that a group (G, ·) is a non-empty set together with a binary operation defined on G

(i)satisfying the associative law, i.e., a · (b · c) = (a · b) · c for all a, b, c ∈ S,

(ii) having an identity e, satifying a · e = a = e · a ∀a ∈ G

(iii) each element a ∈ G has an inverse a′ satisfying a · a′ = a′ · a = e.

A gorup G is said to be abelian if a · b = b · a ∀a, b ∈ G.

Some examples of abelian group are (R,+), (Z,+), (Q,+), (C,+), (K4, ∗) the Klein’s 4- group.

On the other hand for any n ≥ 3 the symmetric group Sn is a non abelian group.

For any n ∈ Z and for any a ∈ G we can define an by

an =


a · a · ·a (n times if n > 0)

e(ifn = 0)

a−1 · a−1 · ·a−1 ,if n < 0

A group G is said to be a cyclic group generated by an element a and we write G =< a > if

G = {an : n ∈ Z}. For a finite group G of order n G is cyclic iff G has an element a (which will

be a generator) of order n. The group Zn of classes congruent modulo n is a cyclic group under

usual addition. The group (Z,+) is an infinite cyclic group with 1 and −1 are two generators.

A nonempty subset H of a group G is called a subgroup of G if H is itself a group under the

restriction of the binary operation ·.

Then we have already proved that a nonempty subset H of a group G is a subgroup of G iff

a · b−1 ∈ H∀a, b ∈ H. Any subgroup of an abelian group is abelian and any subgroup of a cyclic

group is cyclic. The intersection of two subgroups of a group is also a subgroup, but the union

of two subgroups will be a subgroup iff one subgroup is contained in the other. In Abstract

Algebra II, we have define a left coset and right coset of a subgroup. Given a subgroup H of

a group (G, ·) two left cosets aH and bH are equal iff a−1 · b ∈ H. The set of all left cosets

(also right cosets) of H forms a partition of G. For a finite group G we have proved Lagrange’s

theorem: order of any subgroup of a finite group divides the order of the group. Indeed, for a

subgroup H of a finite group G, the relation |G| = |H| × [G : H] holds, where [G : H] is the

number of distinct left(or right) cosets of H, called the index of H in G.

We shall now introduce a special type of subgroups H of a group G to construct a new group,

to be called quotient group.
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2 Normal Subgroups

Definition 2.1. A subgroup H of a group (G, ·) is said to be a normal subgroup of G if any left

coset of H is equal with the corresponding right coset of H i.e aH = Ha ∀a ∈ G.

Example 2.2. (i) For any group G the trivial subgroups {e} and G are always normal subgroups.

(ii) Every subgroup of an abelian group is a normal subgroup. Indeed, if H is a subgroup of an

abelian group G, then for any a ∈ G the set {a · h : h ∈ H} = {h · a : h ∈ H}.

(iii) Consider the quaternion group Q8 generated by two elements a, b where o(a) = 4, a2 = b2

and b · a = a3 · b. Then it can be shown that Q8 is a nonabelian group of order 8 whose every

subgroup is normal.

(iv) Consider the symmetric group S3 which is a nonabelian group of order 6 containing the

permutations over{1, 2, 3}. Here the subgroup H1 = {e, (1, 2)} is not a normal subgroup. In fact

it can be easily verified that (1, 3)H1 ̸= H1(1, 3).

(v) For any group G the center Z(G) is a normal subgroup.

Example 2.3. Suppose H be a subgroup of a group G such that every left coset of H is a right

coset of H. Then H is a normal subgroup of G.

If aH is a left coset of H then aH = Hb for some b ∈ G. Now a ∈ aH = Hb ⇒ a = hb for

some h ∈ H ⇒ ab−1 = h ∈ H ⇒ Hb = Ha. So aH = Ha. Thus H is normal in G.

Definition 2.4. A group G is said to be a simple group if it has no nontrivial normal subgroup.

Example 2.5. (i) Every group of prime order is a simple group, since by Lagrange’s theorem

the only subgroups of a prime order group are {e} and the group itself.

(ii) Any cyclic group of composite order is not simple as in a cyclic group every subgroup is

normal and every cyclic group has a nontrivial subgroup, unless it is of prime order.

Theorem 2.6. Suppose H be a subgroup of a group G of index 2. Then H is a normal subgroup

of G.

Proof. Since [G : H] = 2 the only two distinct left cosets of H are H and G−H. Similarly the

only two distinct right cosets are H and G −H. Now for any a ∈ G aH = H = Ha iff a ∈ H

and aH = G−H = Ha iff a /∈ H.Hence aH = Ha ∀a ∈ G showing that H is normal in G.

Example 2.7. In the symmetric group Sn the alternating group An which the subgroup consisting

of all even permutations of Sn contains exactly n!/2 elements and so [Sn : An] = 2. Thus An is

a normal subgroup of Sn. Thus Sn is a not a simple group for n > 2.
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Proposition 2.8. A subgroup H of a group G is normal in G iff aHa−1 ⊆ H ∀a ∈ G.

Proof. If H is normal in G, then for any a ∈ G and for any h ∈ H aha−1 = h1aa
−1 (since

aH = Ha) = h1 ∈ H. So aHa−1 ⊆ H.

Conversely, if aHa−1 ⊆ H ∀a ∈ G, then for any a ∈ G aH = aHa−1a ⊆ Ha and Ha =

aa−1Ha ⊆ aH implies aH = Ha ∀a ∈ G which implies that H is normal.

Corollary 2.9. If H and K are two normal subgroups of a group G then (i) H ∩K is a normal

subgroup of G.

(ii) HK = KH is a normal subgroup of G.

(iii) < H ∪K >= HK.

Corollary 2.10. If {Hα : α ∈ Γ} be a family of normal subgroups of a group G then
∩

α∈ΓHα

is a normal subgroup of G.

Proposition 2.11. A subgroup H of a group G is normal in G iff aHa−1 = H ∀a ∈ G.

Proof. If H is normal in G, then for any a ∈ G aHa−1 = Haa−1 = H

Conversely, if aHa−1 = H ∀a ∈ G, then for any a ∈ G aH = aHa−1a = Ha and which implies

that H is normal.

Corollary 2.12. Suppose H be a finite subgroup of a group which is the unique subgroup of G

of order |H|. Then H is a normal subgroup of G.

Proof. Since H is a subgroup of G, for any a ∈ G aHa−1 is also a subgroup of G with |aHa−1| =

|H|. So from uniqueness aHa−1 = H showing that H is normal in G.

Example 2.13. Suppose G be a group of order 51, which has a subgroup of H of order 17.

Then H is a normal subgroup of G.

If K is subgroup of G other than H of order 17 then |H∩K| = 1. Then |HK| = |H||K|/|H∩K| >

51, a contradiction. So H is the unique subgroup of G of order 17. Hence H is a normal subgroup

of G.

Theorem 2.14. Suppose A and B be two normal subgroups of a group G and A ∩ B = {e}.

Then ab = ba ∀a ∈ A, b ∈ B.

Proof. From the normality conditions of A and B, aba−1b−1 ∈ A∩B = {e}. Hence the result.

Example 2.15. Suppose H be a subgroup of G. Then N(H) = {x ∈ G : xHx−1 = H} is a

subgroup of G and H is a normal subgroup of N(H).
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N(H) is called the normaliser of H in G. It is the maximal subgroup of G containing H in

which H is normal.

Example 2.16. If H is a normal subgroup of G and K is a subgroup of G containing H, then

H is a normal subgroup of K.

Example 2.17. If H is a normal subgroup of K and K is a normal subgroup of G then H may

not be a normal subgroup of G.

Consider the dihedral group D4 generated by two elements a, b with o(a) = 4, o(b) = 2, ba = a3b.

D4 = {e, a, a2, a3, b, ab, a2b, a3b}. Here K = {e, ab, a2, a3b} is a normal subgroup (since index of

K is 2) of D4 and H = {e, a3b} is a normal subgroup of K, but H is not a normal subgroup of

D4.

3 Quotient Group

We shall now construct a new group from the original group.

Theorem 3.1. Suppose H be a normal subgroup of (G, ·). Consider the set L = {aH : a ∈ H}

of all distinct left cosets of H in G. Define the binary operation · on L by aH · bH = (a · b)H

∀a, b ∈ G. Then L is a group under the operation · .

Proof. We shall first show that the operation is well defined on L . Indeed, if aH = bH and cH =

dH, then a−1b ∈ H and c−1d ∈ H. Since H is normal (ac)−1bd = c−1a−1bd = c−1a−1bcc−1d ∈ H

implies aH · cH = bH · dH. The defining properties of a group are then obvious.

Definition 3.2. The above group L is called the quotient group of H in G which will be denoted

by G/H.

The following theorem is obvious from the definition.

Theorem 3.3. If H is a subgroup of an abelian group G then G/H is a quotient group, which

is also abelian.

Theorem 3.4. If H is a subgroup of a cyclic group G then G/H is a quotient group, which is

also cyclic. Further more if a is a generator of G then aH is a generator of G/H.

Theorem 3.5. If the quotient group G/Z(G) is cyclic then G is an abelian group.

Proof. Suppose G/Z(G) is a cyclic group generated by aZ(G). Then any g ∈ G gZ(G) =

amZ(G) for some m ∈ Z. Now for any g1, g2 ∈ G g1 = amp and g2 = anq for some m,n ∈ Z and

p, q ∈ Z(G) implies g1g2 = ampanq = amanpq = am+nqp = an+mqp = anqamp = g2g1.
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4 Group Homomorphisms

We shall now study the category of groups by defining a suitable morphism between group

objects, which should be a mapping preserving the binary operation.

Definition 4.1. Given two groups (G,+) and (G1, ·) a mapping f : G −→ G1 is said to be a

group homomorphism or simply a morphism if f(a+ b) = f(a) · f(b) ∀a, b ∈ G. If no ambiguity

occur we simply write the defining condition as f(ab) = f(a)f(b) ∀a, b ∈ G.

Example 4.2. Given any group G the identity mapping i : G −→ G is a group homomorphism.

Example 4.3. Given any groups G and G1 the mapping f : G −→ G1 defined by f(g) = eG1

∀g ∈ G is a group homomorphism, called the trivial homomorphism.

Proposition 4.4. Suppose f : G −→ G1 be a homomorphism. Then

(i) f(eG) = eG1

(ii) f(a−1) = (f(a))−1 ∀a ∈ G

(iii) f(an) = (f(a))n ∀n ∈ Z ∀a ∈ G

(iv) o(f(a)) divides o(a) ∀a ∈ G having finite order.

(v) the set Imf = f(G)={f(a) : ∀a ∈ G} is a subgroup of G1

(vi) If G is abelian then Imf is also an abelian group.

(vii) If G is cyclic then Imf is also a cyclic group.

Proof. (i) f(eG) = f(eGeG) = f(eG)f(eG) ⇒ f(eG) = eG1 .

(ii) From (i) eG1 = f(eG) = f(a)f(a−1) ⇒ f(a−1) = (f(a))−1 ∀a ∈ G

(iii)The result follows immediately from (i) and (ii) and induction on n.

(iv) The result directly follows from (iii).

(v) Since eG1 = f(eG), Imf is nonempty. Now for any x = f(a), y = f(b) in Imf , xy−1 =

f(ab−1) ∈ Imf implies that Imf is a subgroup of G1.

(vi) ∀a, b ∈ G, f(a)f(b) = f(ab) = f(ba) = f(b)f(a) implies Imf is abelian if G is abelian.

(vii) Follows directly from (iii)

We often denote the identity elements of two groups G and G1 by the same symbol e.

Example 4.5. For any n ∈ N ∪ {0}, the map f : Z −→ Z defined by f(a) = na ∀a ∈ Z is a

group homomorphism. In fact any group homomorphism f : Z −→ Z is of the above form.

Clearly the function f : Z −→ Z defined by f(a) = na ∀a ∈ Z is a group homomorphism.

Now suppose f : Z −→ Z is a group homomorphism. Let f(1) = n. Then from the previous

proposition(iii), it is clear that f(a) = na ∀a ∈ Z.
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Definition 4.6. Given two groups (G,+) and (G1, ·) a homomorphism f : G −→ G1 is said to

be

(i) a monomorphism if f is injective.

(ii) an epimorphism if f is surjective.

(iii) an isomorphism if f is bijective.

We say that G is isomorphic with G1 if there is an isomorphism f : G −→ G1. We denote

this by G ∼= G1.

Theorem 4.7. Suppose f : G −→ G1 is a homomorphism then the set H = {a ∈ G : f(a) = e}

is a normal subgroup of G.

Proof. Since f(e) = e, H ̸= ∅. For any a, b ∈ H, f(ab−1) = f(a)(f(b))−1 = e ⇒ ab−1 ∈ H,

showing that H is a subgroup of G.

Now for any a ∈ G,h ∈ H, f(aha−1) = f(a)e(f(a))−1 = e ⇒ aha−1 ∈ H implies H is a normal

subgroup of G.

The above subgroup is called the kernel of the homomorphism f and it is denoted by Kerf .

Theorem 4.8. Suppose f : G −→ G1 is a homomorphism then f is a monomorphism iff

Kerf = {e}

Proof. If f is a monomorphism then, a ∈ Kerf ⇔ f(a) = e ⇔ a = e.

Conversely if Kerf = {e}, then f(a) = f(b) ⇒ f(ab−1) = e ⇒ ab−1 ∈ Kerf ⇒ a = b ⇒ f is

injective.

Example 4.9. Consider the matrix group GLn(R) of all non singular real matrices of order n

with respect to matrix multiplication.

Here the mapping f : GLn(R) −→ R∗ defined by f(A) = detA is a group homomorphism

with Kerf = SLn(R), where SLn(R) is the special linear group consisting of matrices of unit

determinant. So from previous theorem SLn(R) is a normal subgroup of GLn(R).

Theorem 4.10. Suppose f : G −→ G1 is an epimorphism then

(i) if H is a normal subgroup of G then f(H) is a normal subgroup of G1.

(ii) if K is a normal subgroup of G1 then f−1(K) is a normal subgroup of G.

Proof. (i) Since H is a subgroup of G, clearly f(H) is a subgroup of G1.

Now for any y ∈ G1, x ∈ f(H), y = f(a), x = f(h) for some a ∈ G,h ∈ H. Then yxy−1 =

f(aha−1) ∈ f(H), showing that f(H) is a normal subgroup of G1.

(ii) Proof is similar to (i).
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Example 4.11. Suppose f : Z −→ Zn is defined by f(a) = [a] for all a ∈ Z. Then f is an

epimorphism.

Example 4.12. Suppose φ : G −→ G/H be defined by φ(a) = aH ∀a ∈ G. Then f is an

epimorphism, called the natural or canonical homomorphism.

Example 4.13. Suppose G be an abelian group and f : G −→ G is defined by f(a) = a2 for all

a ∈ G. Then f is a homomorphism. Also if order of G is odd then f is an isomorphism.

Example 4.14. Suppose G be an abelian group of oredr n and f : G −→ G is defined by

f(a) = am for all a ∈ G. Then f is is an isomorphism iff gcd(m,n) = 1.

Example 4.15. Suppose G be a group and f : G −→ G is defined by f(a) = a−1 for all a ∈ G.

Then f is an isomorphism iff G is abelian.

Theorem 4.16. Suppose f : G −→ G1 is an isomorphism then

(i) G is abelian iff G1 is abelian.

(ii) G is cyclic iff G1 is cyclic.

(iii) o(a) = o(f(a)) for all a ∈ G.

(iv) if H is a normal subgroup of G iff f(H) is a normal subgroup of G1.

(v) f−1 : G1 −→ G is an isomorphism.

Proof. The proof is straight forward

Theorem 4.17. Suppose f : G −→ G1 and g : G1 −→ G2 are homomorphism then gof is a

homomorphism.

Proof. The proof is straight forward.

5 Automorphism group

Definition 5.1. An isomorphism f : G −→ G is called an automorphism.

Example 5.2. If G is a gorup of order 7, then f : G −→ G defined by f(x) = x2 ∀x ∈ G is an

automorphism.

Theorem 5.3. Suppose G be a group. Then the set S of all isomorphism on G forms a group

under mapping composition.

Proof. Since the identity mapping is an isomorphism, S ̸= ∅. Suppose f, g ∈ S. Then f and

g being isomorphisms, fog is also an isomorphism. Also f−1 is an isomorphism. So S is a

group.
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This group is called the automorphism group of G, denoted by Aut(G).

Theorem 5.4. The automorphism group of Zn is isomrphic with Un.

Proof. Suppose f : Zn −→ Zn be an automorphism. Then f([1]) = [nf ] is a generator of Zn.

Then gcd(nf , n) = 1. So [nf ] ∈ Un. Define φ : Aut(Zn) −→ Un by φ(f) = [nf ] ∀f ∈ Aut(Zn).

Then it is a routine matter to check that φ : Aut(Zn) −→ Un is an isomorphism.

Theorem 5.5. Suppose x ∈ G. Define fx : G −→ G by fx(a) = xax−1 ∀a ∈ G. Then

(i) fx is an automorphism.

(ii) fxofy = fxy ∀x, y ∈ G.

(iii) fx
−1 = fx−1

(iv) for any φ ∈ Aut(G) φofxoφ
−1 = fφ(x)

(v) The set {fx : G −→ G/fx(a) = xax−1∀a ∈ G} is a normal subgroup of Aut(G)

Proof. (i) For a, b ∈ G, fx(ab) = xabx−1 = xax−1xbx−1 = fx(a)fx(b) implies fx is a homomor-

phism. Verification of isomorphism is trivial.

(ii) (fxofy)(a) = fx(yay
−1) = x(yay−1)x−1 = xy(a)(xy)−1 = fxy(a) ∀a ∈ G.

(iii) fxofx−1 = fxx−1 = fe= identity mapping.

(iv) for any φ ∈ Aut(G) (φofxoφ
−1)(a) = (φofx)(φ

−1)(a) = (φofx)(b) [ where (φ)(b) = a] =

φ(xbx−1) = φ(x)aφ(x)−1 = fφ(x)(a)

(v) is straightforward from (i) to (iv).

The set {fx : G −→ G/fx(a) = xax−1∀a ∈ G} is called the group of inner automorphisms,

denoted by InnG.

6 Isomorpism Theorems and Their Applications

In this section we establish the relation between homomorphic image of a group and a quotient

group.

Theorem 6.1. Suppose f : G −→ G1 be an epimorphism and H be a normal subgroup of G

contained in Kerf . Suppose g : G −→ G/H be the natural homomorphism. Then there exists a

unique epimorphism φ : G/H −→ G1 such that f = φog. Furthermore, φ is an isomorphism iff

H = Kerf

Proof. If b ∈ aH, then b = ah, for some h ∈ H and f(b) = f(ah) = f(a). Therefore, f has the

same effect on every element of the coset aH. Thus the mapping φ : G/H −→ G1 defined by
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φ(aH) = f(a) is well defined. Since φ(aHbH) = φ(abH) = f(ab) = f(a)f(b) = φ(aH)φ(bH),

φ is a homomorphism.Also Imφ = Imf .From the definition f = φog.

Now aH ∈ Kerφ ⇐⇒ f(a) = e ⇐⇒ a ∈ Kerf . So Kerφ = (Kerf)/H. Therfore, φ is an

isomorphism iff Kerf = H.

Finally φ is unique since it is completely determined by f .

From the above theorem we see that every homomorphism of a group G onto G1 induces

an isomorphism of G/Kerf onto G1. This result plays a fundamental role in group theory to

classify the groups upto isomorphism.It is known as Fundamental theorem or first isomorphism

theorem for groups.

Theorem 6.2. Suppose f : G −→ G1 be a homomorphism then G/Kerf is isomorphic to f(G).

Proof. Here f : G −→ f(G) is an epimorphism. So considering H = Kerf the result follows

from the previous theorem.

Example 6.3. For any n ∈ N, Sn/An
∼= Z2 as the mapping f : Sn −→ Z2 defined by f(x) = 0

if x is an even permutation, f(x) = 1 if x is an odd permutation is an onto homomorphism with

Kerf = An.

Example 6.4. The group R/Z is isomorphic with the circle group S1 = {z ∈ C : |z| = 1}.

Here the mapping f : R −→ S1 defined by f(x) = exp(2πix)∀x ∈ R is an epimorphism with

Kerf = Z.

Example 6.5. For any group G the quotient group G/Z(G) is isomorphic to InnG. Here the

mapping f : G −→ InnG defined by f(x) = fx [as defined in theorem 5.5 ] is an epimorphism

with Kerf = Z(G).

Example 6.6. The group Z/nZ is isomorphic to Zn follows form the first isomorphism theorem

applied on the epimorphism f : Z −→ Zn defined by f(a) = [a].

Example 6.7. Consider the mapping f : GL2(Zp) −→ (Zp)
∗ defind by f(A) = detA. Then f

is an epimorphism with Kerf = SL2(Zp). By First isomorphism Theorem GL2(Zp)/SL2(Zp) ∼=

(Zp)
∗.

Theorem 6.8. Suppose K and N are subgroups of a group G and N is normal in G. Then

K/N ∩K is isomorphic to NK/N .

Proof. Let us define a mapping f from K to NK/N by f(x) = xN . Then f is an epimorphism.

By First isomorphism theorem the result follows.
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Corollary 6.9. Suppose K and H are normal subgroups of a group G and K ⊆ H. Then H/K

is a normal subgroup of G/K and (G/K)/(H/K)isomorphic to G/H.

Example 6.10. From the above corollary Z/ < 3 > is isomorphic to (Z/ < 6 >)/(< 3 > / <

6 >).

Theorem 6.11. Suppose f : G −→ G1 be an epimorphism then the assignment K 7−→ f(K)

defines a one-one correspondence between the set H of all subgroups of G containing Kerf

and the set f(H ) of all subgroups of G1. Also under this map normal subgroups correspond to

normal subgroup.

Example 6.12. (i)The groups (R,+) and (Z+) are not isomorphic as (Z+) is cyclic and (R,+)

is non cyclic.

(iii) The groups (R,+) and (Q,+) are not isomorphic although both of them are non cyclic.

Example 6.13. The groups S3, · and Z6,+) are not isomorphic as S3, · is non abelian but Z6,+)

is abelian.

Example 6.14. The groups D4 and Q8 are non isomorphic as D4 contains only two elements

of order 4, while Q8 contains exactly six elements of order 4.
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