Lecture Notes on Group Theory

Normal subgroups and Group homomorphisms B.Sc Honours Course(MTMA Module X)

GOPAL ADAK

Assistant Professor, Department of Mathematics, St. Paul's Cathedral Mission College e-mail: ga.mtm@spcmc.ac.in

11.02.2019

Contents

1	Introduction	3
2	Normal Subgroups	4
3	Quotient Group	6
4	Group Homomorphisms	7
5	Automorphism group	9
6	Isomorpism Theorems and Their Applications	10

1 Introduction

Recall that a group (G, \cdot) is a non-empty set together with a binary operation defined on G

(i)satisfying the associative law, i.e., $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in S$,

(ii) having an identity e, satisfying $a \cdot e = a = e \cdot a \ \forall a \in G$

(iii) each element $a \in G$ has an inverse a' satisfying $a \cdot a' = a' \cdot a = e$.

A gorup G is said to be abelian if $a \cdot b = b \cdot a \ \forall a, b \in G$.

Some examples of abelian group are $(\mathbb{R}, +)$, $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{C}, +)$, $(K_4, *)$ the Klein's 4- group. On the other hand for any $n \ge 3$ the symmetric group S_n is a non abelian group.

For any $n \in \mathbb{Z}$ and for any $a \in G$ we can define a^n by

$$a \cdot a \cdot a$$
 (*n* times if $n > 0$)

$$a^{n} = \begin{cases} e(ifn = 0) \\ a^{-1} \cdot a^{-1} \cdot a^{-1} & \text{if } n < 0 \end{cases}$$

A group G is said to be a cyclic group generated by an element a and we write $G = \langle a \rangle$ if $G = \{a^n : n \in \mathbb{Z}\}$. For a finite group G of order n G is cyclic iff G has an element a (which will be a generator) of order n. The group Z_n of classes congruent modulo n is a cyclic group under usual addition. The group $(\mathbb{Z}, +)$ is an infinite cyclic group with 1 and -1 are two generators. A nonempty subset H of a group G is called a subgroup of G if H is itself a group under the restriction of the binary operation \cdot .

Then we have already proved that a nonempty subset H of a group G is a subgroup of G iff $a \cdot b^{-1} \in H \forall a, b \in H$. Any subgroup of an abelian group is abelian and any subgroup of a cyclic group is cyclic. The intersection of two subgroups of a group is also a subgroup, but the union of two subgroups will be a subgroup iff one subgroup is contained in the other. In Abstract Algebra II, we have define a left coset and right coset of a subgroup. Given a subgroup H of a group (G, \cdot) two left cosets aH and bH are equal iff $a^{-1} \cdot b \in H$. The set of all left cosets (also right cosets) of H forms a partition of G. For a finite group G we have proved Lagrange's theorem: order of any subgroup of a finite group divides the order of the group. Indeed, for a subgroup H of a finite group G, the relation $|G| = |H| \times [G : H]$ holds, where [G : H] is the number of distinct left(or right) cosets of H, called the index of H in G.

We shall now introduce a special type of subgroups H of a group G to construct a new group, to be called quotient group.

2 Normal Subgroups

Definition 2.1. A subgroup H of a group (G, \cdot) is said to be a normal subgroup of G if any left coset of H is equal with the corresponding right coset of H i.e $aH = Ha \ \forall a \in G$.

Example 2.2. (i) For any group G the trivial subgroups $\{e\}$ and G are always normal subgroups. (ii) Every subgroup of an abelian group is a normal subgroup. Indeed, if H is a subgroup of an abelian group G, then for any $a \in G$ the set $\{a \cdot h : h \in H\} = \{h \cdot a : h \in H\}$.

(iii) Consider the quaternion group Q_8 generated by two elements a, b where o(a) = 4, $a^2 = b^2$ and $b \cdot a = a^3 \cdot b$. Then it can be shown that Q_8 is a nonabelian group of order 8 whose every subgroup is normal.

(iv) Consider the symmetric group S_3 which is a nonabelian group of order 6 containing the permutations over $\{1, 2, 3\}$. Here the subgroup $H_1 = \{e, (1, 2)\}$ is not a normal subgroup. In fact it can be easily verified that $(1, 3)H_1 \neq H_1(1, 3)$.

(v) For any group G the center Z(G) is a normal subgroup.

Example 2.3. Suppose H be a subgroup of a group G such that every left coset of H is a right coset of H. Then H is a normal subgroup of G.

If aH is a left coset of H then aH = Hb for some $b \in G$. Now $a \in aH = Hb \Rightarrow a = hb$ for some $h \in H \Rightarrow ab^{-1} = h \in H \Rightarrow Hb = Ha$. So aH = Ha. Thus H is normal in G.

Definition 2.4. A group G is said to be a simple group if it has no nontrivial normal subgroup.

Example 2.5. (i) Every group of prime order is a simple group, since by Lagrange's theorem the only subgroups of a prime order group are $\{e\}$ and the group itself.

(ii) Any cyclic group of composite order is not simple as in a cyclic group every subgroup is normal and every cyclic group has a nontrivial subgroup, unless it is of prime order.

Theorem 2.6. Suppose H be a subgroup of a group G of index 2. Then H is a normal subgroup of G.

Proof. Since [G:H] = 2 the only two distinct left cosets of H are H and G - H. Similarly the only two distinct right cosets are H and G - H. Now for any $a \in G \ aH = H = Ha$ iff $a \in H$ and aH = G - H = Ha iff $a \notin H$. Hence $aH = Ha \ \forall a \in G$ showing that H is normal in G. \Box

Example 2.7. In the symmetric group S_n the alternating group A_n which the subgroup consisting of all even permutations of S_n contains exactly n!/2 elements and so $[S_n : A_n] = 2$. Thus A_n is a normal subgroup of S_n . Thus S_n is a not a simple group for n > 2.

Proposition 2.8. A subgroup H of a group G is normal in G iff $aHa^{-1} \subseteq H \ \forall a \in G$.

Proof. If H is normal in G, then for any $a \in G$ and for any $h \in H$ $aha^{-1} = h_1aa^{-1}$ (since aH = Ha) = $h_1 \in H$. So $aHa^{-1} \subseteq H$.

Conversely, if $aHa^{-1} \subseteq H \ \forall a \in G$, then for any $a \in G \ aH = aHa^{-1}a \subseteq Ha$ and $Ha = aa^{-1}Ha \subseteq aH$ implies $aH = Ha \ \forall a \in G$ which implies that H is normal. \Box

Corollary 2.9. If H and K are two normal subgroups of a group G then (i) $H \cap K$ is a normal subgroup of G.

(ii) HK = KH is a normal subgroup of G.

 $(iii) < H \cup K >= HK.$

Corollary 2.10. If $\{H_{\alpha} : \alpha \in \Gamma\}$ be a family of normal subgroups of a group G then $\bigcap_{\alpha \in \Gamma} H_{\alpha}$ is a normal subgroup of G.

Proposition 2.11. A subgroup H of a group G is normal in G iff $aHa^{-1} = H \ \forall a \in G$.

Proof. If H is normal in G, then for any $a \in G \ aHa^{-1} = Haa^{-1} = H$ Conversely, if $aHa^{-1} = H \ \forall a \in G$, then for any $a \in G \ aH = aHa^{-1}a = Ha$ and which implies that H is normal.

Corollary 2.12. Suppose H be a finite subgroup of a group which is the unique subgroup of G of order |H|. Then H is a normal subgroup of G.

Proof. Since H is a subgroup of G, for any $a \in G \ aHa^{-1}$ is also a subgroup of G with $|aHa^{-1}| = |H|$. So from uniqueness $aHa^{-1} = H$ showing that H is normal in G.

Example 2.13. Suppose G be a group of order 51, which has a subgroup of H of order 17. Then H is a normal subgroup of G.

If K is subgroup of G other than H of order 17 then $|H \cap K| = 1$. Then $|HK| = |H||K|/|H \cap K| > 51$, a contradiction. So H is the unique subgroup of G of order 17. Hence H is a normal subgroup of G.

Theorem 2.14. Suppose A and B be two normal subgroups of a group G and $A \cap B = \{e\}$. Then $ab = ba \ \forall a \in A, b \in B$.

Proof. From the normality conditions of A and B, $aba^{-1}b^{-1} \in A \cap B = \{e\}$. Hence the result. \Box

Example 2.15. Suppose H be a subgroup of G. Then $N(H) = \{x \in G : xHx^{-1} = H\}$ is a subgroup of G and H is a normal subgroup of N(H).

N(H) is called the normaliser of H in G. It is the maximal subgroup of G containing H in which H is normal.

Example 2.16. If H is a normal subgroup of G and K is a subgroup of G containing H, then H is a normal subgroup of K.

Example 2.17. If H is a normal subgroup of K and K is a normal subgroup of G then H may not be a normal subgroup of G.

Consider the dihedral group D_4 generated by two elements a, b with $o(a) = 4, o(b) = 2, ba = a^3b$. $D_4 = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$. Here $K = \{e, ab, a^2, a^3b\}$ is a normal subgroup (since index of K is 2) of D_4 and $H = \{e, a^3b\}$ is a normal subgroup of K, but H is not a normal subgroup of D_4 .

3 Quotient Group

We shall now construct a new group from the original group.

Theorem 3.1. Suppose H be a normal subgroup of (G, \cdot) . Consider the set $\mathscr{L} = \{aH : a \in H\}$ of all distinct left cosets of H in G. Define the binary operation \cdot on \mathscr{L} by $aH \cdot bH = (a \cdot b)H$ $\forall a, b \in G$. Then \mathscr{L} is a group under the operation \cdot .

Proof. We shall first show that the operation is well defined on \mathscr{L} . Indeed, if aH = bH and cH = dH, then $a^{-1}b \in H$ and $c^{-1}d \in H$. Since H is normal $(ac)^{-1}bd = c^{-1}a^{-1}bd = c^{-1}a^{-1}bcc^{-1}d \in H$ implies $aH \cdot cH = bH \cdot dH$. The defining properties of a group are then obvious.

Definition 3.2. The above group \mathscr{L} is called the quotient group of H in G which will be denoted by G/H.

The following theorem is obvious from the definition.

Theorem 3.3. If H is a subgroup of an abelian group G then G/H is a quotient group, which is also abelian.

Theorem 3.4. If H is a subgroup of a cyclic group G then G/H is a quotient group, which is also cyclic. Further more if a is a generator of G then aH is a generator of G/H.

Theorem 3.5. If the quotient group G/Z(G) is cyclic then G is an abelian group.

Proof. Suppose G/Z(G) is a cyclic group generated by aZ(G). Then any $g \in G \ gZ(G) = a^m Z(G)$ for some $m \in \mathbb{Z}$. Now for any $g_1, g_2 \in G \ g_1 = a^m p$ and $g_2 = a^n q$ for some $m, n \in \mathbb{Z}$ and $p, q \in Z(G)$ implies $g_1g_2 = a^m pa^n q = a^m a^n pq = a^{m+n}qp = a^{n+m}qp = a^n qa^m p = g_2g_1$.

4 Group Homomorphisms

We shall now study the category of groups by defining a suitable morphism between group objects, which should be a mapping preserving the binary operation.

Definition 4.1. Given two groups (G, +) and (G_1, \cdot) a mapping $f : G \longrightarrow G_1$ is said to be a group homomorphism or simply a morphism if $f(a + b) = f(a) \cdot f(b) \quad \forall a, b \in G$. If no ambiguity occur we simply write the defining condition as $f(ab) = f(a)f(b) \quad \forall a, b \in G$.

Example 4.2. Given any group G the identity mapping $i: G \longrightarrow G$ is a group homomorphism.

Example 4.3. Given any groups G and G_1 the mapping $f : G \longrightarrow G_1$ defined by $f(g) = e_{G_1}$ $\forall g \in G$ is a group homomorphism, called the trivial homomorphism.

Proposition 4.4. Suppose $f: G \longrightarrow G_1$ be a homomorphism. Then

$$(i) f(e_G) = e_{G_1}$$

(ii) $f(a^{-1}) = (f(a))^{-1} \forall a \in G$

(*iii*) $f(a^n) = (f(a))^n \ \forall n \in \mathbb{Z} \ \forall a \in G$

(iv) o(f(a)) divides $o(a) \forall a \in G$ having finite order.

(v) the set $Imf = f(G) = \{f(a) : \forall a \in G\}$ is a subgroup of G_1

(vi) If G is abelian then Imf is also an abelian group.

(vii) If G is cyclic then Imf is also a cyclic group.

Proof. (i) $f(e_G) = f(e_G e_G) = f(e_G)f(e_G) \Rightarrow f(e_G) = e_{G_1}$.

(ii) From (i) $e_{G_1} = f(e_G) = f(a)f(a^{-1}) \Rightarrow f(a^{-1}) = (f(a))^{-1} \quad \forall a \in G$

(iii) The result follows immediately from (i) and (ii) and induction on n.

(iv) The result directly follows from (iii).

(v) Since $e_{G_1} = f(e_G)$, Imf is nonempty. Now for any x = f(a), y = f(b) in Imf, $xy^{-1} = f(ab^{-1}) \in Imf$ implies that Imf is a subgroup of G_1 .

(vi) $\forall a, b \in G, f(a)f(b) = f(ab) = f(ba) = f(b)f(a)$ implies Imf is abelian if G is abelian.

(vii) Follows directly from (iii)

We often denote the identity elements of two groups G and G_1 by the same symbol e.

Example 4.5. For any $n \in \mathbb{N} \cup \{0\}$, the map $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $f(a) = na \ \forall a \in \mathbb{Z}$ is a group homomorphism. In fact any group homomorphism $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ is of the above form. Clearly the function $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ defined by $f(a) = na \ \forall a \in \mathbb{Z}$ is a group homomorphism. Now suppose $f : \mathbb{Z} \longrightarrow \mathbb{Z}$ is a group homomorphism. Let f(1) = n. Then from the previous proposition(*iii*), it is clear that $f(a) = na \ \forall a \in \mathbb{Z}$. **Definition 4.6.** Given two groups (G, +) and (G_1, \cdot) a homomorphism $f : G \longrightarrow G_1$ is said to be

- (i) a monomorphism if f is injective.
- (ii) an epimorphism if f is surjective.
- (iii) an isomorphism if f is bijective.

We say that G is isomorphic with G_1 if there is an isomorphism $f: G \longrightarrow G_1$. We denote this by $G \cong G_1$.

Theorem 4.7. Suppose $f: G \longrightarrow G_1$ is a homomorphism then the set $H = \{a \in G : f(a) = e\}$ is a normal subgroup of G.

Proof. Since f(e) = e, $H \neq \emptyset$. For any $a, b \in H$, $f(ab^{-1}) = f(a)(f(b))^{-1} = e \Rightarrow ab^{-1} \in H$, showing that H is a subgroup of G.

Now for any $a \in G, h \in H$, $f(aha^{-1}) = f(a)e(f(a))^{-1} = e \Rightarrow aha^{-1} \in H$ implies H is a normal subgroup of G.

The above subgroup is called the kernel of the homomorphism f and it is denoted by Kerf.

Theorem 4.8. Suppose $f : G \longrightarrow G_1$ is a homomorphism then f is a monomorphism iff $Kerf = \{e\}$

Proof. If f is a monomorphism then, $a \in Kerf \Leftrightarrow f(a) = e \Leftrightarrow a = e$. Conversely if $Kerf = \{e\}$, then $f(a) = f(b) \Rightarrow f(ab^{-1}) = e \Rightarrow ab^{-1} \in Kerf \Rightarrow a = b \Rightarrow f$ is injective.

Example 4.9. Consider the matrix group $GL_n(\mathbb{R})$ of all non singular real matrices of order n with respect to matrix multiplication.

Here the mapping $f : GL_n(\mathbb{R}) \longrightarrow \mathbb{R}^*$ defined by $f(A) = \det A$ is a group homomorphism with $Kerf = SL_n(\mathbb{R})$, where $SL_n(\mathbb{R})$ is the special linear group consisting of matrices of unit determinant. So from previous theorem $SL_n(\mathbb{R})$ is a normal subgroup of $GL_n(\mathbb{R})$.

Theorem 4.10. Suppose $f: G \longrightarrow G_1$ is an epimorphism then

(i) if H is a normal subgroup of G then f(H) is a normal subgroup of G_1 .

(ii) if K is a normal subgroup of G_1 then $f^{-1}(K)$ is a normal subgroup of G.

Proof. (i) Since H is a subgroup of G, clearly f(H) is a subgroup of G₁.
Now for any y ∈ G₁, x ∈ f(H), y = f(a), x = f(h) for some a ∈ G, h ∈ H. Then yxy⁻¹ = f(aha⁻¹) ∈ f(H), showing that f(H) is a normal subgroup of G₁.
(ii) Proof is similar to (i).

Example 4.11. Suppose $f : \mathbb{Z} \longrightarrow \mathbb{Z}_n$ is defined by f(a) = [a] for all $a \in \mathbb{Z}$. Then f is an epimorphism.

Example 4.12. Suppose $\varphi : G \longrightarrow G/H$ be defined by $\varphi(a) = aH \ \forall a \in G$. Then f is an epimorphism, called the natural or canonical homomorphism.

Example 4.13. Suppose G be an abelian group and $f: G \longrightarrow G$ is defined by $f(a) = a^2$ for all $a \in G$. Then f is a homomorphism. Also if order of G is odd then f is an isomorphism.

Example 4.14. Suppose G be an abelian group of oredr n and $f : G \longrightarrow G$ is defined by $f(a) = a^m$ for all $a \in G$. Then f is is an isomorphism iff gcd(m, n) = 1.

Example 4.15. Suppose G be a group and $f: G \longrightarrow G$ is defined by $f(a) = a^{-1}$ for all $a \in G$. Then f is an isomorphism iff G is abelian.

Theorem 4.16. Suppose $f: G \longrightarrow G_1$ is an isomorphism then

(i) G is abelian iff G_1 is abelian.

(ii) G is cyclic iff G_1 is cyclic.

(iii) o(a) = o(f(a)) for all $a \in G$.

(iv) if H is a normal subgroup of G iff f(H) is a normal subgroup of G_1 .

(v) $f^{-1}: G_1 \longrightarrow G$ is an isomorphism.

Proof. The proof is straight forward

Theorem 4.17. Suppose $f: G \longrightarrow G_1$ and $g: G_1 \longrightarrow G_2$ are homomorphism then gof is a homomorphism.

Proof. The proof is straight forward.

5 Automorphism group

Definition 5.1. An isomorphism $f: G \longrightarrow G$ is called an automorphism.

Example 5.2. If G is a gorup of order 7, then $f: G \longrightarrow G$ defined by $f(x) = x^2 \ \forall x \in G$ is an automorphism.

Theorem 5.3. Suppose G be a group. Then the set S of all isomorphism on G forms a group under mapping composition.

Proof. Since the identity mapping is an isomorphism, $S \neq \emptyset$. Suppose $f, g \in S$. Then f and g being isomorphisms, $f \circ g$ is also an isomorphism. Also f^{-1} is an isomorphism. So S is a group.

This group is called the automorphism group of G, denoted by Aut(G).

Theorem 5.4. The automorphism group of \mathbb{Z}_n is isomrphic with U_n .

Proof. Suppose $f : \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$ be an automorphism. Then $f([1]) = [n_f]$ is a generator of \mathbb{Z}_n . Then $gcd(n_f, n) = 1$. So $[n_f] \in U_n$. Define $\varphi : Aut(\mathbb{Z}_n) \longrightarrow U_n$ by $\varphi(f) = [n_f] \ \forall f \in Aut(\mathbb{Z}_n)$. Then it is a routine matter to check that $\varphi : Aut(\mathbb{Z}_n) \longrightarrow U_n$ is an isomorphism. \Box

Theorem 5.5. Suppose $x \in G$. Define $f_x : G \longrightarrow G$ by $f_x(a) = xax^{-1} \ \forall a \in G$. Then

(i) f_x is an automorphism. (ii) $f_x of_y = f_{xy} \forall x, y \in G$. (iii) $f_x^{-1} = f_{x^{-1}}$ (iv) for any $\varphi \in Aut(G) \ \varphi of_x o \varphi^{-1} = f_{\varphi(x)}$ (v) The set $\{f_x : G \longrightarrow G/f_x(a) = xax^{-1} \forall a \in G\}$ is a normal subgroup of Aut(G)Proof. (i) For $a, b \in G$, $f_x(ab) = xabx^{-1} = xax^{-1}xbx^{-1} = f_x(a)f_x(b)$ implies f_x is a homomorphism. Verification of isomorphism is trivial. (ii) $(f_x of_y)(a) = f_x(yay^{-1}) = x(yay^{-1})x^{-1} = xy(a)(xy)^{-1} = f_{xy}(a) \ \forall a \in G$. (iii) $f_x of_{x^{-1}} = f_{xx^{-1}} = f_e$ identity mapping. (iv) for any $\varphi \in Aut(G) \ (\varphi of_x o \varphi^{-1})(a) = (\varphi of_x)(\varphi^{-1})(a) = (\varphi of_x)(b)$ [where $(\varphi)(b) = a$] = $\varphi(xbx^{-1}) = \varphi(x)a\varphi(x)^{-1} = f_{\varphi(x)}(a)$ (v) is straightforward from (i) to (iv).

The set $\{f_x : G \longrightarrow G/f_x(a) = xax^{-1} \forall a \in G\}$ is called the group of inner automorphisms, denoted by InnG.

6 Isomorpism Theorems and Their Applications

In this section we establish the relation between homomorphic image of a group and a quotient group.

Theorem 6.1. Suppose $f : G \longrightarrow G_1$ be an epimorphism and H be a normal subgroup of G contained in Kerf. Suppose $g : G \longrightarrow G/H$ be the natural homomorphism. Then there exists a unique epimorphism $\varphi : G/H \longrightarrow G_1$ such that $f = \varphi \circ g$. Furthermore, φ is an isomorphism iff H = Kerf

Proof. If $b \in aH$, then b = ah, for some $h \in H$ and f(b) = f(ah) = f(a). Therefore, f has the same effect on every element of the cos aH. Thus the mapping $\varphi : G/H \longrightarrow G_1$ defined by

 $\varphi(aH) = f(a)$ is well defined. Since $\varphi(aHbH) = \varphi(abH) = f(ab) = f(a)f(b) = \varphi(aH)\varphi(bH)$, φ is a homomorphism. Also $Im\varphi = Imf$. From the definition $f = \varphi og$.

Now $aH \in Ker\varphi \iff f(a) = e \iff a \in Kerf$. So $Ker\varphi = (Kerf)/H$. Therfore, φ is an isomorphism iff Kerf = H.

Finally φ is unique since it is completely determined by f.

From the above theorem we see that every homomorphism of a group G onto G_1 induces an isomorphism of G/Kerf onto G_1 . This result plays a fundamental role in group theory to classify the groups up to isomorphism. It is known as Fundamental theorem or first isomorphism theorem for groups.

Theorem 6.2. Suppose $f: G \longrightarrow G_1$ be a homomorphism then G/Kerf is isomorphic to f(G).

Proof. Here $f: G \longrightarrow f(G)$ is an epimorphism. So considering H = Kerf the result follows from the previous theorem.

Example 6.3. For any $n \in \mathbb{N}$, $S_n/A_n \cong \mathbb{Z}_2$ as the mapping $f: S_n \longrightarrow Z_2$ defined by f(x) = 0if x is an even permutation, f(x) = 1 if x is an odd permutation is an onto homomorphism with $Kerf = A_n$.

Example 6.4. The group \mathbb{R}/\mathbb{Z} is isomorphic with the circle group $S^1 = \{z \in \mathbb{C} : |z| = 1\}$. Here the mapping $f : \mathbb{R} \longrightarrow S^1$ defined by $f(x) = exp(2\pi i x) \forall x \in \mathbb{R}$ is an epimorphism with $Kerf = \mathbb{Z}$.

Example 6.5. For any group G the quotient group G/Z(G) is isomorphic to InnG. Here the mapping $f: G \longrightarrow InnG$ defined by $f(x) = f_x$ [as defined in theorem 5.5] is an epimorphism with Kerf = Z(G).

Example 6.6. The group $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to \mathbb{Z}_n follows form the first isomorphism theorem applied on the epimorphism $f : \mathbb{Z} \longrightarrow \mathbb{Z}_n$ defined by f(a) = [a].

Example 6.7. Consider the mapping $f : GL_2(\mathbb{Z}_p) \longrightarrow (\mathbb{Z}_p)^*$ defind by $f(A) = \det A$. Then f is an epimorphism with $Kerf = SL_2(\mathbb{Z}_p)$. By First isomorphism Theorem $GL_2(\mathbb{Z}_p)/SL_2(\mathbb{Z}_p) \cong (\mathbb{Z}_p)^*$.

Theorem 6.8. Suppose K and N are subgroups of a group G and N is normal in G. Then $K/N \cap K$ is isomorphic to NK/N.

Proof. Let us define a mapping f from K to NK/N by f(x) = xN. Then f is an epimorphism. By First isomorphism theorem the result follows. **Corollary 6.9.** Suppose K and H are normal subgroups of a group G and $K \subseteq H$. Then H/K is a normal subgroup of G/K and (G/K)/(H/K) isomorphic to G/H.

Example 6.10. From the above corollary $\mathbb{Z}/\langle 3 \rangle$ is isomorphic to $(\mathbb{Z}/\langle 6 \rangle)/(\langle 3 \rangle)/\langle 6 \rangle$.

Theorem 6.11. Suppose $f : G \longrightarrow G_1$ be an epimorphism then the assignment $K \longmapsto f(K)$ defines a one-one correspondence between the set \mathscr{H} of all subgroups of G containing Kerf and the set $f(\mathscr{H})$ of all subgroups of G_1 . Also under this map normal subgroups correspond to normal subgroup.

Example 6.12. (*i*) The groups $(\mathbb{R}, +)$ and $(\mathbb{Z}+)$ are not isomorphic as $(\mathbb{Z}+)$ is cyclic and $(\mathbb{R}, +)$ is non cyclic.

(iii) The groups $(\mathbb{R}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic although both of them are non cyclic.

Example 6.13. The groups S_3 , \cdot and \mathbb{Z}_6 , +) are not isomorphic as S_3 , \cdot is non abelian but \mathbb{Z}_6 , +) is abelian.

Example 6.14. The groups D_4 and Q_8 are non isomorphic as D_4 contains only two elements of order 4, while Q_8 contains exactly six elements of order 4.

References

- [1] Thomas W. Hungerford, Algebra, Springer
- [2] D. S. Malik, John M. Mordeson, M. K. Sen, Fundamentals of Abstract Algebra, The McGraw-Hill Companies, Inc.
- [3] David S. Dummit, Richard M. Foote, Abstract Algebra, Third Edn. Wiley India Pvt. Ltd.
- [4] Joseph A. Gallian, Contemporary Abstract Algebra, Fourth Edn. Narosa Publishing House.
- [5] B. S. Vatsa, Suchi Vatsa, Modern Algebra, New Age International Publisher.
- [6] Herstein I. N., Topics in Algebra, Blaisdell Publishing Company.
- [7] Rotman J. J., An Introduction to the Theory of Groups, Wm. C. Brown.