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1 Introduction

Recall that a group (G, ) is a non-empty set together with a binary operation defined on G
(i)satisfying the associative law, i.e., a-(b-c) = (a-b)-c for all a,b,c € S,
(ii) having an identity e, satifyinga-e=a=e-aVa € G
(iii) each element a € G has an inverse o’ satisfying a-a’ =da'-a =e.
A gorup G is said to be abelian if a-b="b-a Va,b € G.
Some examples of abelian group are (R, +), (Z,+), (Q,+), (C,+), (K4, *) the Klein’s 4- group.
On the other hand for any n > 3 the symmetric group S, is a non abelian group.
For any n € Z and for any a € G we can define a” by

a-a--a (n times if n > 0)
a” = qe(ifn = 0)

al-al.-alifn<o
A group G is said to be a cyclic group generated by an element a and we write G =< a > if
G = {a" : n € Z}. For a finite group G of order n G is cyclic iff G has an element a (which will
be a generator) of order n. The group Z,, of classes congruent modulo n is a cyclic group under
usual addition. The group (Z,+) is an infinite cyclic group with 1 and —1 are two generators.
A nonempty subset H of a group G is called a subgroup of G if H is itself a group under the
restriction of the binary operation -.
Then we have already proved that a nonempty subset H of a group G is a subgroup of G iff
a-b~' € HVa,b € H. Any subgroup of an abelian group is abelian and any subgroup of a cyclic
group is cyclic. The intersection of two subgroups of a group is also a subgroup, but the union
of two subgroups will be a subgroup iff one subgroup is contained in the other. In Abstract
Algebra II, we have define a left coset and right coset of a subgroup. Given a subgroup H of
a group (G,-) two left cosets aH and bH are equal iff a=! - b € H. The set of all left cosets
(also right cosets) of H forms a partition of G. For a finite group G we have proved Lagrange’s
theorem: order of any subgroup of a finite group divides the order of the group. Indeed, for a
subgroup H of a finite group G, the relation |G| = |H| x [G : H] holds, where [G : H] is the
number of distinct left(or right) cosets of H, called the index of H in G.
We shall now introduce a special type of subgroups H of a group G to construct a new group,

to be called quotient group.



2 Normal Subgroups

Definition 2.1. A subgroup H of a group (G, ") is said to be a normal subgroup of G if any left
coset of H 1is equal with the corresponding right coset of H i.e aH = Ha Ya € G.

Example 2.2. (i) For any group G the trivial subgroups {e} and G are always normal subgroups.
(ii) Every subgroup of an abelian group is a normal subgroup. Indeed, if H is a subgroup of an
abelian group G, then for any a € G the set {a-h:he H} ={h-a:he H}.

(iii) Consider the quaternion group Qg generated by two elements a,b where o(a) = 4, a® = b?
and b-a = a®-b. Then it can be shown that Qg is a nonabelian group of order 8 whose every
subgroup is normal.

(iv) Consider the symmetric group Ss which is a nonabelian group of order 6 containing the
permutations over{1,2,3}. Here the subgroup Hy = {e, (1,2)} is not a normal subgroup. In fact
it can be easily verified that (1,3)H; # Hy(1,3).

(v) For any group G the center Z(G) is a normal subgroup.

Example 2.3. Suppose H be a subgroup of a group G such that every left coset of H is a right
coset of H. Then H is a normal subgroup of G.

If aH is a left coset of H then aH = Hb for some b € G. Now a € aH = Hb = a = hb for
someh € H=ab"'=he H= Hb= Ha. So aH = Ha. Thus H is normal in G.

Definition 2.4. A group G is said to be a simple group if it has no nontrivial normal subgroup.

Example 2.5. (i) Every group of prime order is a simple group, since by Lagrange’s theorem
the only subgroups of a prime order group are {e} and the group itself.
(i) Any cyclic group of composite order is not simple as in a cyclic group every subgroup is

normal and every cyclic group has a nontrivial subgroup, unless it is of prime order.

Theorem 2.6. Suppose H be a subgroup of a group G of index 2. Then H is a normal subgroup
of G.

Proof. Since [G : H] = 2 the only two distinct left cosets of H are H and G — H. Similarly the
only two distinct right cosets are H and G — H. Now for any a € G aH = H = Ha if a € H
and aH =G — H = Ha iff a ¢ H.Hence aH = Ha Va € G showing that H is normal in G. [

Example 2.7. In the symmetric group S, the alternating group A, which the subgroup consisting
of all even permutations of Sy, contains exactly n!/2 elements and so [Sy, : An] = 2. Thus A, is

a normal subgroup of Sy. Thus Sy, is a not a simple group for n > 2.



Proposition 2.8. A subgroup H of a group G is normal in G iff aHa=' C H Va € G.

Proof. If H is normal in G, then for any a € G and for any h € H aha™' = hjaa™!

aH = Ha) = hy € H. So aHa ! C H.

(since

Conversely, if aHa™! C H Va € G, then for any ¢ € G aH = aHa 'a C Ha and Ha =
aa 'Ha C aH implies aH = Ha Ya € G which implies that H is normal. O

Corollary 2.9. If H and K are two normal subgroups of a group G then (i) HNK is a normal
subgroup of G.

(ii) HK = K H is a normal subgroup of G.

(iti)) < HUK >= HK.

Corollary 2.10. If {H, : a € '} be a family of normal subgroups of a group G then (\,cr Ha

s a normal subgroup of G.
Proposition 2.11. A subgroup H of a group G is normal in G iff aHa™' = H Va € G.

Proof. If H is normal in G, then for any a € G aHa ' = Haa ' = H
Conversely, if aHa™' = H Ya € G, then for any a € G aH = aHa 'a = Ha and which implies

that H is normal. O

Corollary 2.12. Suppose H be a finite subgroup of a group which is the unique subgroup of G
of order |H|. Then H is a normal subgroup of G.

Proof. Since H is a subgroup of G, for any a € G aHa ™! is also a subgroup of G with |[aHa™!| =

|H|. So from uniqueness aHa~! = H showing that H is normal in G. O

Example 2.13. Suppose G be a group of order 51, which has a subgroup of H of order 17.
Then H is a normal subgroup of G.

If K is subgroup of G other than H of order 17 then |HNK| = 1. Then |HK| = |H||K|/|HNK| >
51, a contradiction. So H is the unique subgroup of G of order 17. Hence H is a normal subgroup

of G.

Theorem 2.14. Suppose A and B be two normal subgroups of a group G and AN B = {e}.
Then ab="ba Ya € A, b € B.

Proof. From the normality conditions of A and B, aba~'b~! € ANB = {e}. Hence the result. [

Example 2.15. Suppose H be a subgroup of G. Then N(H) = {x € G : xHx™' = H} is a

subgroup of G and H is a normal subgroup of N(H).



N(H) is called the normaliser of H in G. It is the maximal subgroup of G containing H in

which H is normal.

Example 2.16. If H is a normal subgroup of G and K is a subgroup of G containing H, then

H is a normal subgroup of K.

Example 2.17. If H is a normal subgroup of K and K is a normal subgroup of G then H may
not be a normal subgroup of G.

Consider the dihedral group Dy generated by two elements a,b with o(a) = 4,0(b) = 2,ba = a’b.
Dy = {e,a,a?, a3 b,ab,a®b,a®b}. Here K = {e,ab,a®, ab} is a normal subgroup (since index of
K is 2) of Dy and H = {e,a®b} is a normal subgroup of K, but H is not a normal subgroup of
Dy.

3 Quotient Group

We shall now construct a new group from the original group.

Theorem 3.1. Suppose H be a normal subgroup of (G,-). Consider the set £ = {aH :a € H}
of all distinct left cosets of H in G. Define the binary operation - on £ by aH - bH = (a - b)H
VYa,b € G. Then £ is a group under the operation - .

Proof. We shall first show that the operation is well defined on .. Indeed, if aH = bH and cH =
dH, then a='b € H and ¢~'d € H. Since H is normal (ac)~'bd = ¢ ta~t'bd = c ta"tbec 'd € H

implies aH - ¢cH = bH - dH. The defining properties of a group are then obvious. O

Definition 3.2. The above group £ is called the quotient group of H in G which will be denoted
by G/H.

The following theorem is obvious from the definition.

Theorem 3.3. If H is a subgroup of an abelian group G then G/H is a quotient group, which

1s also abelian.

Theorem 3.4. If H is a subgroup of a cyclic group G then G/H is a quotient group, which is

also cyclic. Further more if a is a generator of G then aH is a generator of G/H.
Theorem 3.5. If the quotient group G/Z(G) is cyclic then G is an abelian group.

Proof. Suppose G/Z(G) is a cyclic group generated by aZ(G). Then any g € G gZ(G) =
a™Z(G) for some m € Z. Now for any g1, 92 € G g1 = a™p and g2 = a"q for some m,n € Z and

p,q € Z(G) implies g1go = a™pa"q = a™a"pg = a""qp = a"T"qp = a™qa™p = ga2g1. O



4 Group Homomorphisms

We shall now study the category of groups by defining a suitable morphism between group

objects, which should be a mapping preserving the binary operation.

Definition 4.1. Given two groups (G,+) and (Gi,-) a mapping f : G — Gy is said to be a
group homomorphism or simply a morphism if f(a+b) = f(a)- f(b) Ya,b € G. If no ambiguity
occur we simply write the defining condition as f(ab) = f(a)f(b) Va,b € G.

Example 4.2. Given any group G the identity mapping i : G — G is a group homomorphism.

Example 4.3. Given any groups G and Gy the mapping f : G — G defined by f(g) = eq,

Vg € G is a group homomorphism, called the trivial homomorphism.

Proposition 4.4. Suppose f: G — Gy be a homomorphism. Then
(i) f(ec) = ec,

(ii) fa™!) = (f(a))"' Va € G

(iii) f(a") = (f(a))" Vn € Z Ya € G

(iv) o(f(a)) divides o(a) Ya € G having finite order.

(v) the set Imf = f(G)={f(a) : Ya € G} is a subgroup of Gy

(vi) If G is abelian then Imf is also an abelian group.

(vii) If G is cyclic then Imf is also a cyclic group.

Proof. (i) f(eq) = f(ecea) = f(ec)f(eq) = [(eq) = eq, -

(ii) From (i) eq, = f(ec) = f(a)f(a™!) = f(a™!) = (f(a)) "' Va € G

(iii) The result follows immediately from (i) and (ii) and induction on n.

(iv) The result directly follows from (iii).

(v) Since eg, = f(eg), Imf is nonempty. Now for any = = f(a), y = f(b) in Imf, xy~! =
f(ab~1') € Imf implies that I'mf is a subgroup of G1.

(vi) Va,b € G, f(a)f(b) = f(ab) = f(ba) = f(b)f(a) implies Imf is abelian if G is abelian.
(vii) Follows directly from (iii) O

We often denote the identity elements of two groups G and G by the same symbol e.

Example 4.5. For any n € NU {0}, the map f : Z — Z defined by f(a) = na Ya € Z is a
group homomorphism. In fact any group homomorphism f : Z — Z is of the above form.
Clearly the function f :7 — Z defined by f(a) = na Ya € Z is a group homomorphism.

Now suppose f : Z — Z is a group homomorphism. Let f(1) = n. Then from the previous

proposition(iii), it is clear that f(a) = na Va € Z.



Definition 4.6. Given two groups (G,+) and (Gi,-) a homomorphism f: G — G is said to
be

(i) a monomorphism if f is injective.

(ii) an epimorphism if f is surjective.

(iii) an isomorphism if f is bijective.

We say that G is isomorphic with G if there is an isomorphism f : G — G1. We denote
this by G = G.

Theorem 4.7. Suppose f : G — Gy is a homomorphism then the set H = {a € G : f(a) = e}

1s a normal subgroup of G.

Proof. Since f(e) = e, H # 0. For any a,b € H, f(ab™!) = f(a)(f(b)) ' =e = ab~! € H,
showing that H is a subgroup of G.
Now for any a € G, h € H, f(aha™!) = f(a)e(f(a))~! = e = aha™' € H implies H is a normal

subgroup of G. O

The above subgroup is called the kernel of the homomorphism f and it is denoted by Kerf.

Theorem 4.8. Suppose f : G — G1 is a homomorphism then f is a monomorphism iff
Kerf = {e}

Proof. If f is a monomorphism then, a € Kerf < f(a) =e < a=e.
Conversely if Kerf = {e}, then f(a) = f(b) = f(ab™}) =e = ab™! € Kerf = a=0b=fis

injective. O

Example 4.9. Consider the matriz group GL,(R) of all non singular real matrices of order n
with respect to matriz multiplication.

Here the mapping f : GL,(R) — R* defined by f(A) = det A is a group homomorphism
with Kerf = SL,(R), where SL,(R) is the special linear group consisting of matrices of unit

determinant. So from previous theorem SLy(R) is a normal subgroup of GL,(R).

Theorem 4.10. Suppose f : G —> G1 is an epimorphism then
(i) if H is a normal subgroup of G then f(H) is a normal subgroup of Gi.
(ii) if K is a normal subgroup of Gy then f~1(K) is a normal subgroup of G.

Proof. (i) Since H is a subgroup of G, clearly f(H) is a subgroup of G;.
Now for any y € G,z € f(H), y = f(a), x = f(h) for some a € G,h € H. Then yry ' =
f(aha™') € f(H), showing that f(H) is a normal subgroup of Gj.

(ii) Proof is similar to (i). O



Example 4.11. Suppose f : Z — Zy, is defined by f(a) = [a] for all a € Z. Then f is an

eptmorphism.
Example 4.12. Suppose ¢ : G — G/H be defined by p(a) = aH Ya € G. Then f is an

epimorphism, called the natural or canonical homomorphism.

Example 4.13. Suppose G be an abelian group and f : G — G is defined by f(a) = a® for all

a € G. Then fis a homomorphism. Also if order of G is odd then f is an isomorphism.
Example 4.14. Suppose G be an abelian group of oredr n and f : G — G is defined by
f(a) =a™ for alla € G. Then f is is an isomorphism iff gcd(m,n) = 1.

Example 4.15. Suppose G be a group and f : G — G is defined by f(a) = a~! for alla € G.

Then f is an isomorphism iff G is abelian.

Theorem 4.16. Suppose f: G — G is an isomorphism then
(i) G is abelian iff Gy is abelian.
(ii) G is cyclic iff Gy is cyclic.

(iii) o(a) = o(f(a)) for alla € G.
(i) if H is a normal subgroup of G iff f(H) is a normal subgroup of Gy.

(v) f~1: Gy — G is an isomorphism.
Proof. The proof is straight forward O

Theorem 4.17. Suppose f : G — G and g : G — G2 are homomorphism then gof is a

homomorphism.

Proof. The proof is straight forward. O

5 Automorphism group

Definition 5.1. An isomorphism [ : G — G is called an automorphism.

Example 5.2. If G is a gorup of order 7, then f : G — G defined by f(z) = 2> Yo € G is an

automorphism.

Theorem 5.3. Suppose G be a group. Then the set S of all isomorphism on G forms a group

under mapping composition.

Proof. Since the identity mapping is an isomorphism, S # (). Suppose f,g € S. Then f and
g being isomorphisms, fog is also an isomorphism. Also f~! is an isomorphism. So S is a

group. 0



This group is called the automorphism group of G, denoted by Aut(G).
Theorem 5.4. The automorphism group of Z, is isomrphic with Uy,.

Proof. Suppose f : Z, — Z, be an automorphism. Then f([1]) = [ny] is a generator of Z,.
Then ged(ng,n) = 1. So [nf] € Uy. Define ¢ : Aut(Z,,) — U, by ¢(f) = [nf] Vf € Aut(Zy,).

Then it is a routine matter to check that ¢ : Aut(Z,,) — U, is an isomorphism. O

Theorem 5.5. Suppose = € G. Define fy: G — G by fo(a) = zaz—! Va € G. Then

(i) fu is an automorphism.

(i) faofy = foy Yo,y € G.

(iii) fo ' = for

(iv) for any ¢ € Aut(G) ofro0™ ! = fuu)

(v) The set {f, : G — G/ f.(a) = xax~Va € G} is a normal subgroup of Aut(G)

Proof. (i) For a,b € G, f.(ab) = xabz~! = zar~taxbz~! = f.(a)f.(b) implies f, is a homomor-
phism. Verification of isomorphism is trivial.

(ii) (fzofy)(a) = folyay™') = a(yay~")a~" = ay(a)(zy) ™" = fuy(a) Va € G.

(i6)) fo0fs1 = frpt = fo= identity mapping.

(iv) for any ¢ € Aut(G) (vofsop~")(a) = (vofz)(w~")(a) = (pofs)(b) [ where ()(b) = a] =
plabe™) = p(@)ap(@) ™" = fo)(a)

(v) is straightforward from (i) to (iv). O

The set {f, : G — G/f.(a) = rax~Va € G} is called the group of inner automorphisms,
denoted by InnG.

6 Isomorpism Theorems and Their Applications

In this section we establish the relation between homomorphic image of a group and a quotient
group.

Theorem 6.1. Suppose f : G — G1 be an epimorphism and H be a normal subgroup of G
contained in Kerf. Suppose g : G — G/H be the natural homomorphism. Then there ezists a

unique epimorphism ¢ : G/H — Gy such that f = @og. Furthermore, ¢ is an isomorphism iff
H = Kerf

Proof. If b € aH, then b = ah, for some h € H and f(b) = f(ah) = f(a). Therefore, f has the
same effect on every element of the coset aH. Thus the mapping ¢ : G/H — G; defined by

10



p(aH) = f(a) is well defined. Since p(aHbH) = ¢(abH) = f(ab) = f(a)f(b) = p(aH)p(bH),
 is a homomorphism.Also I'mp = I'mf.From the definition f = pog.

Now aH € Kerp <= f(a) = e <= a € Kerf. So Kerp = (Kerf)/H. Therfore, ¢ is an
isomorphism iff Kerf = H.

Finally ¢ is unique since it is completely determined by f. O

From the above theorem we see that every homomorphism of a group G onto (G; induces
an isomorphism of G/Kerf onto G;. This result plays a fundamental role in group theory to
classify the groups upto isomorphism.It is known as Fundamental theorem or first isomorphism

theorem for groups.
Theorem 6.2. Suppose f : G — G be a homomorphism then G/Ker f is isomorphic to f(G).

Proof. Here f : G — f(G) is an epimorphism. So considering H = Kerf the result follows

from the previous theorem. O

Example 6.3. For anyn € N, S, /A, = Zs as the mapping f : S, — Z3 defined by f(x) =0
if x is an even permutation, f(x) =1 if x is an odd permutation is an onto homomorphism with

Kerf = A,.

Example 6.4. The group R/Z is isomorphic with the circle group S = {2 € C : |z| = 1}.
Here the mapping f : R — S defined by f(x) = exp(2wiz)Ve € R is an epimorphism with
Kerf =7.

Example 6.5. For any group G the quotient group G/Z(G) is isomorphic to InnG. Here the
mapping [ : G — InnG defined by f(x) = f. [as defined in theorem 5.5 | is an epimorphism
with Kerf = Z(G).

Example 6.6. The group Z/nZ is isomorphic to Z,, follows form the first isomorphism theorem

applied on the epimorphism f : Z — L, defined by f(a) = [a].

Example 6.7. Consider the mapping f : GLa(Zy) — (Zyp)* defind by f(A) = det A. Then f
is an epimorphism with Kerf = SLy(Zy,). By First isomorphism Theorem GLy(Zy)/SLo(Z,) =
(Zp)*

Theorem 6.8. Suppose K and N are subgroups of a group G and N is normal in G. Then
K/N N K is isomorphic to NK/N.

Proof. Let us define a mapping f from K to NK/N by f(z) = xN. Then f is an epimorphism.

By First isomorphism theorem the result follows. O
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Corollary 6.9. Suppose K and H are normal subgroups of a group G and K C H. Then H/K
is a normal subgroup of G/K and (G/K)/(H/K)isomorphic to G/H.

Example 6.10. From the above corollary 7./ < 3 > is isomorphic to (Z) <6 >)/(<3 >/ <
6 >).

Theorem 6.11. Suppose f : G — G1 be an epimorphism then the assignment K —— f(K)
defines a one-one correspondence between the set € of all subgroups of G containing Kerf
and the set f(F) of all subgroups of G1. Also under this map normal subgroups correspond to

normal subgroup.

Example 6.12. (i)The groups (R,+) and (Z+) are not isomorphic as (Z+) is cyclic and (R, +)
s non cyclic.

(iii) The groups (R,+) and (Q,+) are not isomorphic although both of them are non cyclic.

Example 6.13. The groups Ss, - and Zg, +) are not isomorphic as Ss, - is non abelian but Zg, +)

is abelian.

Example 6.14. The groups D4 and Qg are non isomorphic as Dy contains only two elements

of order 4, while Qg contains exactly six elements of order 4.
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