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1. Metric Spaces: Introductory Concepts 

1.1  Definition:   A metric space is an ordered pair (X, d) where X is any nonempty set 

and d: Xx X → ℝ≥0 is a mapping satisfying 

 a) d(x, y) = 0  if and only if x = y. 

b) d(x, y) = d(y, x) for all x, y in X. 

c) d(x, y) +  d(y, z) ≥  d(x, z) for all x, y, z in X. 

The mapping d: Xx X → ℝ≥0 satisfying a), b), c) is called a metric on X. 

If there is no ambiguity over the metric d  then simply we call X is a metric space. 

                 A mapping d: Xx X → ℝ≥0 satisfying b), c), and a’): d(x,x) = 0 for all x  is 

called a pseudometric on X and then  (X,d) is called a pseudometric space. 

1.2  Examples: Some familiar examples of metric spaces are 

 1. Let   X = ℝn         u   is defined by 𝐮(x, y) =  √∑ (xi − yi)
2n

i=1  2  for x =

(x1, x2, … xn) ∈ ℝnand y = (y1, y2, … yn) ∈ ℝn. 

Then  𝐮(x, y) ≥ 0  ∀ x, y ∈   ℝn.  

a)  𝐮(x, y) = 0  if and only if xi = yi ∀ i = 1,2, … , n iff x = y   

b) 𝐮(x, y) =  𝐮(y, x)  ∀ x, y ∈  ℝn  

c)  Suppose x = (x1, x2, … xn), y = (y1, y2, … , yn), z = (z1, z2, … , zn)  ∈ ℝn 

 Let ai = xi −  yi, bi = yi −  zi ∀ i = 1, 2, … , n. Then from Cauchy - Schwarz's  

inequality, ∑ (ai +  bi)
2𝑛

i=1 = ∑ (ai)
2𝑛

i=1 + ∑ ( bi)
2𝑛

i=1 +  2 ∑ aibi
𝑛
i=1 ≤ 

∑(ai)
2

𝑛

i=1

+ ∑( bi)
2

𝑛

i=1

+  2√∑(ai)
2

𝑛

i=1

. ∑( bi)
2

𝑛

i=1

2

= (√∑(ai)
2

𝑛

i=1

2

+ √∑( bi)
2

𝑛

i=1

2

)

2

 

 Taking square root both sides of the inequality, 𝐮(x, z) ≤   𝐮(x, y) +  𝐮(y, z) 

showing that 𝐮   is a metric on  ℝn.  
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 This metric is called the  Euclidean metric on ℝn  

In a similar way   ℂn can be shown as a metric space with the Euclidean metric 

defined as follows: 

2.  ℂn  with the metric u defined by 𝐮(x, y) =  √∑ |xi − yi|
2n

i=1  2  for x =

(x1, x2, … xn) ∈ ℂn and y = (y1, y2, … yn) ∈ ℂn . 

3.  Given any non empty set X, let  d  be defined by d(x, y) = 0 if x =

y in X  and = 1 if x ≠ y in X.   

Then  d(x, y) ≥ 0  ∀ x, y ∈ X  . 

it can be easily verified the defining conditions a) and b) of a metric. To establish 

c) we observe that for all x, y, z in X,    d(x, y) +  d(y, z) = 0 (if  x = y =  z)   =

 d(x, z) ,    ≥  1 ( if  not all x, y z are equal) ≥  d(x, z) .  

So  d is a metric on X  called the discrete metric and X is called a discrete metric 

space. 

4. Suppose  X = C[a, b], and ρ  is defined by ρ(x, y) = sup{|x(t) − y(t)|: t ∈

[a, b]}  for all x, y in C[a, b].   

Then  it can be easily verified that ρ  is a metric on C[a, b], called the supremum 

metric or uniform metric. 

5. For X =    l∞  = set of all bounded sequence of real or complex numbers, 

d∞ defined by d∞(x, y) = sup{|xn − yn|: n ∈ N}  for all x = (xn)n,   y =

(yn)n in  l∞is a  metric   

6. Let 1 ≤ p <  ∞.  Consider the set lp of all sequences (xn)n of real or complex 

numbers such that ∑ |xn|p <   ∞.∞
n=1   Define dp(x, y) = (∑ |xn − yn|p∞

n=1 )
1

p   

for all x = (xn)n,   y = (yn)n in  lp. Then dp is a metric on  lp.   

7.  If  (X, d) is a metric space, then let us define d∗ on X by  d∗(x, y) =
d(x,y)

1+ d(x,y)
 

∀ x, y ∈  X . Then d∗ satisfies a) b) of definition 1.1. To check the triangle 

inequality [ c) of definition 1.1  ] we see that the mapping  x →
x

1+x
 ∀x ≥  0 is an 
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increasing function in x.  So for any x, y, z ∈  X,      d(x, y) +  d(y, z) ≥  d(x, z)  ⇒
d(x,y)+ d(y,z)

1+d(x,y)+ d(y,z)
  ≥  

d(x,z)

1+d(x,z)
 .   

 ⇒ 
d(x,y)

1+d(x,y)
+  

d(y,z)

1+d(y,z)
  ≥

d(x,z)

1+d(x,z)
 ⇒ d∗(x, y) + d∗(y, z) ≥

 d∗(x, z) for all x, y, z in X.  

Thus  d∗ is a metric  on X. 

  Using the method used to establish triangle inequality in example 7, we can 

show that  

8.  Suppose X be the set of all real or complex sequences.  For x =

 (xn) and  y =  (yn)    ∈  X,  let us define ρ(x, y) =  ∑
|xn−yn|

2n(1+|xn−yn| )n  . 

Then  ρ is a metric on X.  

 1.3. Property:  If (x, d) is a metric space and  x, y, z are in X then  

|d(x, z) −  d(y, z)| ≤ d(x, y) … … … (1) 

 The proof follows from the Triangle inequality in the defining conditions of a 

metric and the symmetry in  (1) between x and y. 

1.4  Example of pseudometric space:  

1. For   X = C[0,1], if  ρ is defined by ρ(x, y) = inf{|x(t) − y(t)|: t ∈ [0,1]}   

 for all x, y in C[0,1]      then ρ  is a pseudometric on X.  

1.5 Definition:   Given a metric space X, if a ∈ X, r > 0   then Br(a) = {x ∈

X: d(x, a) < 𝑟} is called the open ball  

and  Br[a] = {x ∈ X: d(x, a) ≤ r} is called closed ball with center a  and radius r. 

1.6  Definition:   A subset S of a metric space X is said to be open in X if for every 

a ∈   S, there is some r > 0 𝑠𝑢𝑐h that Br(a) is a subset of S.  

A subset F of X is said to be closed in X if X\F  is open in X.  

A point x in a metric space (X, d) is said to be an isolated point if {x} is an open set 

in X. (X, d) is said to be discrete if every  point is isolated.  
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1.7  Proposition: In any metric space (X, d),  every open ball is an open set and 

every closed ball is a closed set. 

Proof: Suppose a ∈ X,    r > 0 where (X, d) is a metric space. We shall show that 

Br(a) is open in (X, d).  

Let p ∈ Br(a). Then d(p, a) < 𝑟. Choose r1 =  r − d(p, a). Then r1 > 0. 

Now if x ∈  Br1
(p) then d(x, a) <= 𝑑(x, p) + d(p, a)  < r1 + d(p, a)  = r. So 

Br1
(p)  ⊆ Br(a). Hence Br(a) is open in (X, d). 

To show that Br[a] is a closed set in (X, d) we see that if p ∈ X \ Br[a], then 

d(p, a) > 𝑟. Choose  r1 =  d(p, a) − r > 0. Then for any x ∈  Br1
(p), d(x, a) >=

 d(p, a) − d(x, p) > r showing that Br1
(p)  ⊆  X \ Br[a]. So X \ Br[a]  is open and 

hence Br[a] is a closed set in (X, d). 

1.8 Examples: a)  In the Euclidean metric space ℝ any open ball with center a is 

Bδ(a)  =  {x ∈  ℝ: |x −  a| < 𝛿}  =  (a − δ, a +  δ) and the closed ball is  Bδ[a]  =

 [a − δ, a +  δ]  which are respectively the open and closed intervals in ℝ. 

b)  If  d be the discrete metric as defined in example 3 of  1.2  then every singleton 

subset is open as well as a closed set  as   for every   x ∈ X,    {x} =  B1

2

(x)  = B1

2

[x]. 

c) The metric space (X, d) given in example 3 of 1.2 is a discrete metric space. 

1.9 Theorem( Hausdorff property):  For any two distinct points a, b in a metric 

space (X, d) there are two  open sets U and V in X  having the property: 

a ∈   U, b ∈ V,   U ∩ V =  ∅. In other words any two distinct points can be 

separated by open sets.   

 

Proof: Since a ≠ b   d(a, b) > 0.  Let  r =
d(a,b)

2
, U = Br(a)and V = Br(b).   

Then U and V serve the desire property. 

 

1.10  Properties of open and closed sets:  In any metric space (X, d) 

a) Arbitrary union of open sets is again an open set. 
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b) Finite intersection of open sets is an open set. 

c) G ⊆ X  is open in X if and only if  G is the union of some open balls. 

                       Using De Morgan’s law on complementation of sets[i.e. complement 

of arbitrary intersection of sets is the arbitrary union of complement of the sets 

and complement of finite union  of sets is the finite union of complement of the 

sets ]we can prove that  

d)  Arbitrary intersection of closed sets is again a closed set. 

e) Finite union  of closed sets is a closed set. 

Proof: a) Suppose {G𝛼: 𝛼 ∈  Γ} be a family of open sets in (X, d). We shall show 

that ⋃ G𝛼𝛼∈ Γ  is also open.  

If x ∈ ⋃ G𝛼𝛼∈ Γ  then x ∈ Gβ for some β ∈  Γ. Since Gβ is an open set, there is an 

r > 0 such that Br(x)  ⊆ Gβ ⊆ ⋃ G𝛼𝛼∈ Γ .  So ⋃ G𝛼𝛼∈ Γ  is open. 

b) Suppose {Gi: i ∈  {1, 2, . . . , n}} be a finite family of open sets in (X, d). We shall 

show that ⋂ Gi
n
i=1   is also open. If x ∈ ⋂ Gi

n
i=1  then  x ∈ Gi for all i.  Gi being an 

open set there is some ri > 0 such that Bri
(x)  ⊆ Gi. Choose r =  min {ri: i =

1,2, . . . n} > 0. Then Br(x) ⊆ Gi ∀ i = 1,2, . . . , n which implies Br(x) ⊆ ⋂ Gi
n
i=1 .  

So ⋂ Gi
n
i=1   is open. 

c) If  G is the union of some open balls then each open ball being an open set 

from (a) it follows that G is an open set. Conversely if G ⊆ X  is open in X  then 

G = ⋃ Brgg∈ G (g) for some  rg > 0.  

1.11  Definition:  In a metric space (X, d)  a subset A ⊆

X is said to be a neighbourhood of  a point a in X if there is  a positive  

real number r such that  a ∈ Br(a) ⊆ A.  In that case a is said to be an interior 

point of A. The set of interior points of a subset A of X is called the interior of A and 

is denoted by intX(A).  

   A point p is said to be an accumulation point of  a subset A of the metric space 

(X, d) if for each r > 0, B′r(a) ∩ A ≠  ∅.  The set of all accumulation points of A is 

called derived set of A and it is denoted by Ad.  
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     A point p is said to be an adherent  point of  a subset A of the metric space (X, d) 

if for each r > 0, Br(a) ∩ A ≠  ∅.  The set of all adherent points of A is called 

closure  of A and it is denoted by clX(A).  

 

 

 

 

1.12 Remark:        In a metric space (X, d)   for each a ∈ X,  

 the countable family N(a) =  {Br(a)  ∶   r is a positive rational } forms a 

neighbourhood base at a.  In that sense every metric space is a first countable 

topological space. 

     The following are straightforward from the definitions: 

1.13 Properties:  In any metric space (X, d) 

a)  intX(∅) =  ∅, intX(X) = X, clX(∅) =  ∅, clX(X) = X. 

b)   G ⊆ X  is open in X if and only if  G = intX(G). 

c)  intX(G) is the largest open set in X contained in G. 

d) intX(G) = ∪ {A ⊆ G ∶ A is an open subset of X}. 

e)  For any A ⊆ X, clX(A) = A ∪ Ad. 

f) For any A ⊆ X, clX(A) is the smallest closed set in X containing A. 

g) For any A ⊆ X,    A is closed in X if and only if  A =  clX(A). 

h) For any A ⊆ X, Ad  is a closed set in X. 

i) For any A ⊆ X, clX(X   \A) = X   \intX(A) and  intX(X   \A) = X   \clX(A). 

j) For any A ⊆ X, B ⊆ X, 

  (i) A ⊆ B  implies intX(A)  ⊆ intX(B), clX(A) ⊆ clX(B) (ii)intX(A ∩ B)

= intX(A) ∩ intX(B), clX(A ∪ B) = clX(A) ∪ clX(B).  
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1.14  Definition: A subset A ⊆ X is said to be a Gδ set (Fσ  set) if it can be 

expressed as  a countable intersection( union) of open(closed) subsets of (𝑋, 𝑑). 

1.15  Definition:  A family B of open subsets of a metric space (X, d) is said to be a 

base for open sets if every open set can be expressed as  a union of some 

members(possibly void) of B. 

        In a metric space (X, d)  the family of open balls is a base for open sets. 

1.16  Definition: In a metric space (X, d) a point a is said to be a boundary point of 

A ⊆ X  if a is neither an interior point of A nor an interior point of X  \A. The set 

of boundary points of A is called boundary of A and is denoted by bdX(A). 

 1.17  Distance between sets and diameter: 

Let (X, d) be a metric space, A ⊆ X,    B ⊆   X, x ∈ X.  The distance between A and 

B denoted by d(A, B) is  d(A, B)   =  inf{d(p, q)  ∶   p ∈ A, q ∈ B}.   The distance 

between A and the point x denoted by d(x, A) is d(x, A)   =  inf{d(x, p)  ∶   p ∈ A}.   

The diameter of A  denoted by diam(A) or  d(A) is  diam(A) =  sup{d(p, q): p ∈

A, q ∈ A}.   

 The subset A is said to be bounded if diam(A) is finite. Otherwise it will be 

unbounded.  

1.18 Properties:  In a metric space (X, d) if A ⊆ X, B ⊆ X,   p ∈ X, then  

(i) p ∈ clX(A) if and only if  d(p, A) = 0. 

(ii) A ⊆ B ⇒ d(A) ≤ d(B). 

(iii) d(clX(A), clX(B)) = d(A, B). 

(iv)  d(clX(A)) = d(A). 

(v)  d(A ∪ B) ≤ d(A) +  d(B) +  d(A, B). 

Proof: (i) Suppose p ∈ clX(A). Then for any δ > 0    Bδ(p) ∩ A ≠ ∅.   If a ∈

Bδ(p) ∩ A  then d(p, A) ≤ d(p, a) < 𝛿 implies d(p, A) = 0. Conversely if 

d(p, A) = 0 then for any δ > 0, there is some a ∈ A such that d(p, a) < 𝛿 . 

Evidently  a ∈ Bδ(p) ∩ A. So p ∈ clX(A). 
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(ii) This is trivially follows from the definition. 

(iii) Since A ⊆ clX(A), B ⊆ clX(B) from the definition and the property of infimum, 

it is clear that d(A, B) ≥ d(clX(A), clX(B)).......(1). Now for any δ > 0 and for any 

x ∈  clX(A), y ∈  clX(B) there are a ∈ A, and  b ∈ B such that d(a, x) <
δ

4
 ,  

d(b, y) <
δ

4
. Then  d(a, b) ≤ d(a, x) + d(x, y) +  d(y, b) < 𝑑(x, y) +

δ

2
. So 

d(A, B) ≤ d(a, b) < 𝑑(x, y) +
δ

2
 . Taking infimum over x, y  we get  

d(clX(A), clX(B)) +
δ

2
≥ d(A, B). Since δ > 0 is arbitrary, d(clX(A), clX(B)) ≥

d(A, B)............(2) From (1) and (2) it follows that d(clX(A), clX(B)) = d(A, B). 

(iv) Clearly d(clX(A)) ≥ d(A). ..........(3)  Now for any δ > 0 and for any x ∈

 clX(A), y ∈  clX(A) there are a ∈ A, and  b ∈ A such that d(a, x) <
δ

4
 ,  d(b, y) <

δ

4
. Then  d(x, y) ≤ d(x, a) + d(a, b) +  d(b, y) < 𝑑(a, b) +

δ

2
. So d(clX(A) ≤

d(a, b) +
δ

2
 . Taking supremum over a, b  we get  d(clX(A)) ≤ d(A, B) +

δ

2
. Since 

δ > 0 is arbitrary, d(clX(A)) ≤ d(A, B)............(4) From (3) and (4) it follows that 

d(clX(A), clX(B)) = d(A, B). 

(v) Now for any a, b ∈ A ∪ B, there are three cases: 

1. If a, b ∈ A then d(a, b) ≤ d(A) ≤ d(A) +  d(B) +  d(A, B).  

2. a, b ∈ B then d(a, b) ≤ d(B) ≤ d(A) +  d(B) +  d(A, B). 

3. a ∈ A, b ∈ B then for any x ∈ A, y ∈ B,     d(a, b) ≤ d(a, x ) + d(x, y) + d(y, b) ≤

d(A) +  d(x, y) +  d( B). 

Taking infimum over a ∈ A, b ∈ B in left side and over x ∈ A, y ∈ B right side  we 

obtain the desire result. 

1.19 Definition:  Given a nonempty set X, two metric d and  d1 are said to be  

equivalent if every open set in (X, d) are open in (X, d1) and vice versa. 

1.20 Property: The following are equivalent for two metric spaces  (X, d) and (X, m) 

(i) Two metrics  d and  m on a set  X are equivalent 

(ii)There  are two positive numbers r1 and r2 such that  for all x, y in X, 
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r1d(x, y) ≤ m(x, y) ≤ r2 d(x, y). 

(iii  There  is a  positive number c  such that  for all x, y in X, 

1

c
d(x, y) ≤ m(x, y) ≤ c d(x, y). 

 

1.21 Examples: (a)  Given any metric space (X, d) the bounded metrics  d1  and  d2 

defined by d1(x, y) =
d(x,   y )

1+d(x,y)
  for all x, y in X  

   and   d2(x, y) = min{1, d(x, y)}  for all x, y in X  are    equivalent with d. 

(b) On  ℝn  the two metrics ρ∗  and  ρ+  defined by,    ρ∗ (x, y) =   |x1 − y1| +

|x2 − y2| + … + |xn −  yn| 

and  ρ+(x, y) = max{ |x1 − y1|, |x2 − y2|, … , |xn − yn|}   are two equivalent 

metrics.  

1.22  Metric subspace:   

Suppose Y be a nonempty subset of a metric space (X,d). Then the restriction 

mapping of d on the set Yx Y is indeed a metric on Y. The metric space (Y, d) is 

called a metric subspace of (X, d). 

1.23 Remark: In a metric subspace (Y, d) as the metric d is the restriction of 

original metric d of (X, d) the open and closed balls in (Y,d) are precisely the 

intersection of Y with the open and closed balls of (X,d) respectively . Also the 

open and closed sets in (Y,d) are precisely the intersection of Y with the open and 

closed sets in (X, d) respectively. 

1.24 Example:  The metric subspace ℕ of the Euclidean metric space ℝ is a 

discrete metric space. 

 

 

 2. Completeness Property  of Metric Spaces 
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         One of the most important property of a first countable topological space is 

the its closed sets can be described by the convergence of the sequences from that 

set. We shall now discuss about  the  convergence of a sequence in a metric space.  

 2.1 Definition:  In a metric space (X, d) a sequence (xn)n  is said to  converge to a 

point  x ∈ X  if for every  ε > 0 there is a positive integer n0  such that n ≥ n0  ⇒

d(xn, x) <  ε . 

  A sequence  (xn)n  is said to be covergent if it converges to a point x  in X .   

A sequence  (xn)n  is said to be a Cauchy sequence  if for every  ε > 0 there is a 

positive integer n0  such that n, m ≥ n0  ⇒ d(xn, xm) <  ε . 

2.2 Note:  If a sequence  (xn)n is convergent then it converges to a unique 

point(due to Hausdorff property  of the metric space ). The point is called the limit 

of the sequence  (xn)n  and we denote it by   lim
n→∞

xn . 

Also we often write  xn  → x  if (xn)n converges to x . 

2.3  Properties:  In a metric space (X, d) if A ⊆ X, x ∈ X, y ∈ X then  

(i) If  (xn)n is convergent then it  is a Cauchy sequence. 

(ii) If  (xn)n is convergent then every subsequence  of  (xn)n is convergent. 

(iii) If xn  → x and yn  → y  then d(xn, yn) → d(x, y). 

(iv)  x ∈ clX(A)  if and only if  there is a sequence (xn) in  A  such that xn  → x. 

(v) x ∈ (A)d  if and only if  there is a sequence (xn) in  A  \{x}  such that xn  → x. 

     2.4 Theorem:  In a metric space (X, d) if a Cauchy sequence (xn)n has a 

convergent subsequence then the sequence (xn)n is convergent. 

Proof:  Suppose (xn)n be a Cauchy sequence which has a convergent subsequence 

(xnr
)

r
 . Let (xnr

)
r
  converges to x.  Then for each ε > 0,  a positive integer 

k1 such that  d(xn, xm) <
ε

2
 for n, m ≥ k1. Also there is a positive integer  

k2 such that  d(xnr
, x) <

ε

2
 for r ≥ k2.  Choose k = max (nk1

, k2), then n ≥ k ⇒

d(xn, x) ≤ d(xn, xnr
) +  d(xnr

, x) <  ε. 

  2.5  Theorem:  In a metric space (X, d) every  Cauchy sequence is bounded. 
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Proof: Suppose (xn)n be a Cauchy sequence.  Choose a positive integer 

k  such that d(xn, xm) < 1  𝑓𝑜𝑟 𝑛, 𝑚 ≥ k.  

Let b = 1 + max{  d(xn, xm): n, m ≤ k }.  Then d(xn, xm) ≤ b   for all  n, m. 

 

     The structure of the metric space will be very concrete in study of many 

interesting problems of mathematical analysis if we impose some extra property 

namely completeness. 

 2.6 Definition:  A  metric space (X, d) is said to be complete if  every  Cauchy 

sequence in (X, d) is convergent in (X, d). 

A metric space (X, d) is said to be incomplete if it is not complete. 

 

                       The completeness axiom for the real numbers is equivalent to the 

completeness of the metric space ℝ and from this we conclude that  ℝ𝑛 is also 

complete. Some nontrivial examples of complete metric spaces are: 

2.7 Examples: 

 (a) The set  X = C[0,1] with   the metric ρ defined by ρ(x, y) = sup{|x(t) −

y(t)|: t ∈ [0,1]}  for all x, y in C[0,1] is a complete metric space. 

Proof:  Let(fn)n be a Cauchy sequence in C[0, 1]. Then for every  ε > 0  

there is a positive integer n0  such that n, m ≥ n0  ⇒ ρ(fn, fm) <  ε. This implies 

sup{|fn(t) − fm(t)|: t ∈ [0,1]} < ε  for n, m ≥ n0  .  Thus |fn(t) − fm(t)| <

ε for every t ∈ [0,1] and for  n, m ≥ n0 . So the sequence is uniformly convergent 

in [0, 1]. Since the uniform limit of a sequence of continuous functions is also  a 

continuous function  the sequence  (fn)n   is convergent.  So  C[0,1] is a  complete  

metric space. 

(b)  If E is a measurable subset of  ℝ and 1 ≤ p ≤  ∞, Lp = {f: E →  ℝ ∶

f is measurable and |f|p is  integrable over E} (with the assumption that f =

g in Lp iff f = g  a. e. on E) then                               ρ defined by   ρ(x, y) =

(∫|x − y|p)
1

p  for all x, y in Lp is a  metric  on  Lp and from  Riesz- Fischer theorem 

it can be shown that Lp is a complete metric space. 
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  2.8       Some Examples of Incomplete metric spaces: 

(a) The Euclidean metric space  ℚ  is an incomplete metric space. 

(b) For X = C[a, b], the metric ρ defined by ρ(x, y) =  ∫ |x(t) −  y(t)|
b

a
dt   is an 

incomplete metric. 

(c) Weierstrass’s theorem tells us that the set P[a, b] of all real valued polynomial 

functions on [a, b] with respect to the supremum metric is an incomplete metric 

space.  

                  In fact, the following is the characterisation of a subspace of a complete 

metric space to become a complete metric space. 

2.9 Properties:  

(1) Suppose (X, d) be a complete metric space and  M be a nonempty subset  of  

X. Then the metric subspace (M, d) is complete if and only if   M  is a closed subset 

of X. 

Proof:  If M is complete then any sequence  (xn)n in M which converges to a point  

x ∈ X, x can not be outside of M. So M is closed. 

Conversely if M is a closed subset of  (X,  d) and  if a sequence (xn)n is Cauchy in M 

then it is Cauchy in (X, d) also. X being complete, (xn)n converges to a point  x   in 

X. Then   x  is an adherent point of M. M being closed,  x must be in M. So M is 

complete. 

(2) If  (X, d)  and (Y,   ρ)  are two metric spaces,  then the product space  X x  Y  is 

complete if and only if  both  X and  Y  are complete metric spaces. 

Proof:  The result follows from the fact that two sequences  (xn)n in X and   (yn)n 

in Y are Cauchy (convergent)sequences in the respective metric space if and only if   

(xn, yn)n is Cauchy (convergent)sequence in X x Y. 

(3) (Cantor’s intersection theorem):  Let  (Fn)n  be a contracting  sequence of 

nonempty closed sets in a metric space  (X, d ) such that  diam(Fn) → 0   as  n →

 ∞.  Then  (X, d)  is complete if and only if  ⋂ Fn n    is a singleton set. 

Proof:  First assume that X is complete. Let  (Fn)n  be a contracting  sequence of 

nonempty closed sets in a metric space  (X, d ) such that  diam(Fn) → 0   as  n →
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 ∞.  For each index  n select xn  ∈ Fn. We claim that (xn)n is a Cauchy sequence.  

Indeed, for each ε > 0 , there is n0 ∈  ℕ  such that  diam(Fn0
) <  ε.  Since (Fn)n is  

contracting if n, m ≥  n0 then xn, xm  ∈ Fn0
 and  d(xn, xm) ≤ diam(Fn0

) <

 ε. Since X is complete (xn)n converges to some x ∈ X. However for each index n,   

Fn is closed and xk  ∈ Fn for k ≥ n  so that  x ∈ Fn for all n.  So  ⋂ Fn n ≠  ∅.  If 

another y distinct from x  is in  ⋂ Fn n  , then diam(Fn) ≥ d(x, y) ↛ 0 leads to a 

contradiction.  

          To prove the converse, suppose that for any  contracting sequence (Fn)n of 

nonempty closed subsets of X, there is a point x ∈ X for which  ⋂ Fn n = {x}. Let 

(xn)n be  a Cauchy sequence in (X, d).  For each index 

n,   let  Fn be the closure of the nonempty set {xk: k ≥ n}.  Then (Fn)n is a 

contracting sequence of nonempty closed sets . So ⋂ Fn n = {x} for  some x ∈ X. 

Clearly then (xn)n converges to x.  Therefore X is complete. 

       Roughly speaking  a metric space fails to be complete because it has “holes”. If 

X is an incomplete metric space, it can always be suitably minimally enlarged to 

become complete. 

  2.10 Definition:  Given two metric spaces (X, d)  and  (Y,  ρ) a mapping  f: X → Y is 

said to be an isometry from X into Y if  d(p, q) =

 ρ(f(p), f(q)) for every pair p, q ∈ X.   X  and Y are said to be isometric  if  there is 

an isometry from X onto Y.  

             A  completion of a metric space (X,  d) is  a complete metric space  (Y,  ρ) 

such that there is an isometry  f from X into Y and f(X)is dense in Y. 

             The  following theorem ensures that there is a completion of a metric space 

which is unique in sense of isometry. 

2.11 Theorem: Every metric space has a completion. Also if (X̅, ρ) and  (X̅1, ρ1)  

are two completion of a metric space (X,  d) then they are isometric. 

Proof: Suppose (X, d) be a metric space.  

Step 1.  Let X′ denote the set of Cauchy’s sequences on X.  Let us define a relation 

~ on X′ by  (xn)n ~ (yn)n if lim
n→∞

d(xn, yn) = 0. Then  ~ is an equivalence relation 

on X′. Let X̅ = X′/~  be the set of equivalence classes. 
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Step 2.   Let us define  ρ ∶   X̅ x X̅  →  ℝ  by  

 for all  (xn)n,  (yn)n in   X̅ ,  ρ((xn)n, (yn)n ) = lim
n→∞

d(xn, yn).  

The mapping is well defined. It is a routine matter to check that  ρ is a metric on X̅.  

Step 3. We shall now show that X̅  is a complete metric space. 

Let (xn
m)n,m  be  a Cauchy sequence  in X̅.  Then ρ ((xn

p
)

n
, (xn

q
)

n
 )  → 0 as p, q →

 ∞. 

Also for each m, (xn
m)n,m is a Cauchy sequence in (X, d). So we may assume that 

d(xn+1 
m , xn

m) <
1

2n
 for each n. Let yn = xn

n.  Then y = (yn)n is a Cauchy sequence in 

(X, d) indeed d(yp, yq) = d(xp
p

,  xq
q

) → 0 as p, q →  ∞. Also ρ((xn
m)n, y )  →

0 as  m →  ∞ implies (xn
m)n,m is convergent. 

Step 4. Suppose f: X →  X̅  be the mapping defined by f(x) =

(x)n, the constant sequence. 

Then  for x, y in X, ρ(f(x), f(y)) =  lim
n→∞

d(x,   y) = d(x, y) implies f is an 

isometry. 

Also  for each x̅ = (xn)n  in  X̅, and for each ε > 0,   there is k ∈ ℕ such that 

 d(xn, xm) <  ε for n, m ≥ k. Let x = xk. Then   f(x) = (x ) ∈ Bε(x̅)  implies 

f( X) is dense in   X̅. 

Consequently  X̅ is a completion of X.  

Step 5. Let (X̅1, ρ1) be another completion of X where g: X → X̅1  be an isometry 

with g( X)  dense in   X1
̅̅ ̅.  We have to define a mapping π from  X̅    onto X̅1 which 

will be an isometry.  Pick any x̅ from  X̅. There is a sequence (f(xn))
n

 in f( X) 

converges to  x̅. f(xn) being a constant sequence, ρ(xn, x̅  )  → 0 as  n → ∞. 

This implies (xn) n is a Cauchy sequence in (X, d). Then (g(xn))
n

 is a Cauchy 

sequence in (X̅1, ρ1). X̅1  being complete, (g(xn))
n

 converges to some x1̅ .  

Denote  x1̅ by π(x̅ ).  

Then π  is well defined. It can be easily shown that π is an isometry 
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 between X̅ and  X̅1. 

       Baire’s   Category Theorem 

       The concept of first and second category are ways of describing  in a certain 

sense, the size of a metric space. They are based in turn on the concept of a 

nowhere dense set. 

2.12 Definition:   A subset  A  of  a metric space (X, d)  is  said to be nowhere dense 

set in X if intX(clX(A)) =  ∅. In other words  the closure of A  does not contain a 

nonempty open set. 

2.13 Examples: (i) Every finite subset of the Euclidean metric space ℝ  is a nowhere 

dense set in ℝ.  

(ii)  In a metric space (X, d) any set consisting  of a convergent sequence (with or 

without limit) is a nowhere dense set. 

(iii)  The set of rational numbers ℚ is not a nowhere dense set in the set ℝ with 

Euclidean metric. 

(iv) The set of irrational numbers is also not a  nowhere dense set in the set ℝ with 

Euclidean metric. 

(v)  The Cantor’s set (constructing by removing middle 1/3 open interval in each 

step from [0,  1] ) is an uncountable subset of [0,  1] which is a nowhere dense set. 

2.14 Properties : In a metric space (M,  d) (i)  an open  subset  A is dense in  (M, d)  

if and only if    M  \ A is nowhere dense in  (M, d).(ii) If M  has no isolated point then 

closure of a discrete set is a nowhere dense set. (iii) the boundary of an open set is 

closed and nowhere dense. (iv) every closed nowhere dense set is the boundary of 

an open set. 

Proof:  (i) M  \ A is nowhere dense in  (M, d) ⇔ intM(  clM(  M  \A)) = ∅   ⇔ M  \ 

clM(A) =  ∅  ⇔   (clM(A)) = M ⇔ A is  dense in  M.                                                                                                                                       

(ii)  Let  D be a discrete subset of M.  Suppose D is not a nowhere dense set. Then 

we have a nonempty open set U ⊆ clM(D). There must be an element a ∈ U ∩ D.  

Then there exists an r > 0 such that Br(a)  ⊆ U  and contains no other points of D. 
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Since M has no isolated points, there is a   y ≠ a  in Br(a). Then every open ball 

centred y must intersect D, contradicts that D is discrete. 

(iii) Let U be an open set in (M,  d).  Then bdM(U) = clM(U)  \ intM(U) =

clM(U)  \U  is a  closed set. Also if A is a nonempty open set  contained in 

bdM(U) then there is some y ∈ Ud ∩ A . Since A is open there is some r >

0  𝑠𝑢𝑐h that Br(y) ⊆ A ⊆  clM(U)  \U a contradiction. So bdM(U) is nowhere 

dense set. 

(iv) Suppose   F  be a closed nowhere dense subset of M.  Let U = M  \F. Then U is 

a dense  open set and F = M  \U = clM(U) \U = bdM(U). 

2.15 Definition:  A subset of a metric space is of (i) the first category if it is 

expressible as a countable union of nowhere dense sets. 

(ii) the second category if it is not of the first category. 

We shall now state the theorem which is known as Baire’s category theorem.  

2.16 Theorem: Every complete metric space is of second category. 

Proof: Suppose on the contrary that the complete metric space (M, d)  is a 

countable union ⋃ Ann  of nowhere dense sets. We begin a construction which  

leads us to a contradiction. A1 being nowhere dense, it will be disjoint from a ball. 

We can take it to be a closed ball S1 of radius ≤ 1.  A2 being nowhere dense, it will 

be disjoint from a ball. So there is a closed ball S2 of radius ≤
1

2
 and  S2  ⊆

S1 and S2 ∩ A2 = ∅. Continuing in  this way we get a descending sequence (Sn)n 

of nonempty closed balls with  Sn ∩ An = ∅ and radius(Sn) ≤
1

n
 . By Cantor’s 

intersection theorem  there is a point y in ⋂ Snn  . But  y lies in none of An’s, 

contradicting the hypothesis that  M =  ⋃ Ann .    

2.17 Note: Completeness property is a metric property i.e. preserved under any 

isometry, whereas second category property is a topological property. So the 

theorem is a link between metric property and topological property.  

2.18 Examples: ( a) The set of rational numbers ℚ is of first category. 

        (b) Denumerable union of first category subsets of a metric space is also of 

first category. 
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(c) From Baire’s category theorem  it can be deduce that the set of irrational 

numbers is a set of second category. 

 

3. Continuity on Metric Spaces 

 

3.1 Definition: A function f: (X,d) → (Y, ρ) is said to be continuous at a point a ∈ X 

if for every positive ε there is a positive  𝛿 such that d(x, a)  < 𝛿 implies ρ(f(x), f(a)) < 

ε.  A function f is continuous on X, if it is continuous at every point of X. 

Since a metric space is first countable the continuity of a function at a point can be 

characterised by sequential criteria: 

3.2 Theorem: A function f: (X,d) → (Y, ρ) is  continuous at a point a ∈ X if and 

only if 

(f(xn))
n

 converges to  f(a) in (Y, ρ)when every  (xn)n converges to a  in  (X, d) .                                

Proof:  If f  is  continuous at a point a ∈ X and  (xn)n converges to a  in  (X, d) 

then for each ε > 0 there is a  𝛿 > 0 such that d(x, a)  < 𝛿 implies ρ(f(x), f(a)) < ε. 

Then there is a positive integer k such that d(xn, a ) < 𝛿 𝑓𝑜𝑟 𝑛 ≥ 𝑘 . Then 

ρ(f(xn), f(a)  ) < 𝜀  𝑓𝑜𝑟 𝑛 ≥ 𝑘 implies (f(xn))
n

 converges to  f(a) in (Y, ρ). 

Conversely if possible let f  be not  continuous at  a . Then there is some ε > 0 such 

that for every choice of   𝛿 > 0 there is x1

∂

  in X such that d(x1

∂

,  a)  < 𝛿 but 

ρ(f(x), f(a)) ≥  ε. Taking 𝛿 =
1

n
 for each n, there is a sequence (xn)n in X,

converging to a but (f(xn))
n

does not converge to  f(a) in (Y, ρ) leads to a 

contradiction. 

3.3 Definition: A function f: (X,d) → (Y, ρ) is said to be  uniformly continuous on X 

if for every positive ε there is a positive  𝛿 such that d(x, y)  < 𝛿 implies ρ(f(x), f(y)) < 

ε  for any two x, y in X. 

 

From the definition it is clear that every uniformly continuous function is 

continuous. 

 

3.4 Theorem: A function f: (X,d) → (Y, ρ) is uniformly continuous on X if and only if 

(f(xn))
n

 is a Cauchy sequence   in (Y, ρ)when ever  (xn)n is  a  Cauchy sequence  .     

Proof:  Similar to the proof of theorem 3.2 
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3.5 Theorem: If  function f: (X,d) → (Y, ρ) is  continuous at a point a ∈ X and 

function g: (Y, ρ) → (Z,  σ) is  continuous at a point f(a)  ∈ Y then their composition 

gof: (X,d) →  (Z, σ) is continuous at a. 

Proof: Follows directly from the theorem 3.2 

3.6  Theorem: for a  function f: (X,d) → (Y, ρ) the following are equivalent: 

(a) f  is  continuous on X . 

(b)  f −1(G)  is open in (X, d) for every open set G in (Y, ρ). 

(c) f −1(K)  is closed in (X, d) for every closed set G in (Y, ρ). 

Proof:  (a) ⇒ (c): If p ∈  clX(f −1(K)) then there is a sequence 

 (xn)n in f −1(K)converges to p in  (X, d).  From the continuity of f  at p, (f(xn ))n   

converges to f(p) in (Y, ρ).  K being closed  f(p) ∈ K . So p ∈  (f −1(K)) implies (c) 

(c) ⇒ (b): For every open set G in (Y, ρ)  Y  \G  is closed.  Then (c) implies 

f −1(Y   \G)  is closed in (X, d ) which implies X  \f −1(G) is closed in X. So  (b) 

holds. 

(b) ⇒ (a): For every positive ε,   B ε(f(a)) is an open set containing f(a). Then   

f −1(B ε(f(a)))  is open set containing a  in (X, d). Choose positive 𝛿 such that 

B 𝛿(a) ⊆ f −1(B ε(f(a)). So f(B 𝛿(a)) ⊆ B ε(f(a) which implies f is continuous at a. 

3.7 Theorem: For any subset A of a metric space (X, d) the mapping f: X →  ℝ 

defined by f(x) = d(x, A) for x ∈ X is a uniformly  continuous mapping. 

Proof: The result follows immediately from the fact that for any x, y ∈

X, | f(x) −  f(y)| = |d(x, A) − d(y, A)| ≤ d(x, y). 

3.8  Theorem: For any closed subset A of a metric space (X, d) there is a 

continuous mapping f: X →  ℝ  such that f(x) = 0 if and only if x ∈ A. 

Proof: Define   f: X →  ℝ  by f(x) = d(x, A) for x ∈ X. From the previous theorem 

3.7 f is a continuous mapping on X and f(x) = 0 if and only if d(x, A) =

0  if and only if x ∈ clX(A) = A. 

3.9 Remark: From theorem 3.6 and 3.8 it is clear that in a metric space a subset is  

closed if and only if it is a zero set. 

      3.10 Regularity Property: For any closed subset 

A of a metric space (X, d)and x ∈ X  \A there are two open sets U and V in (X,

d)such that  A ⊆ U , x ∈ V  and  U ∩ V =  ∅ 

Proof: Define   f: X →  ℝ  by f(z) = d(z, A) for z ∈ X. Then  d(x, A) = 2r > 0  
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From 3.7 f is a continuous mapping on X. Let U = f −1(−1, r)   and  V = f −1(r, 3r). 

Then both U and  V are open sets. Then A ⊆ U , x ∈ V  and  U ∩ V =  ∅ 

 

3.11 Property: Suppose 

A and B  are two disjoint closed subsets of a metric space   

              (X, d). Then there are two open sets U and V in (X, d)such that  A ⊆ U ,

B ⊆ V  and  U ∩ V =  ∅(This property is called normal property). 

Proof: Define   f: X →  ℝ  by f(z) =
d(z,A)

d(z,A)+d(z,B)
 for z ∈ X.  A and B being disjoint f  

is well defined. Also from theorem 3.7 and 3.8  f is continuous function assumes 

values 0 on A and  1 on B. Considering U = f −1 (−1,
1

2
)  and V = f −1(

1

2
, 2) we 

obtain the desire result. 

 3.12  Property: For any metric space (X, d) the function d: X x X →  ℝ is a 

continuous mapping.  

Proof: For any( x0, y0) ∈ X x X, if a sequence (xn, yn)n converges to ( x0, y0) then 

from  2.3 (iii)  (d(xn , yn))
n

 converges to  d(x0, y0). Hence the function d: X x X →

 ℝ is a continuous mapping.  

3.13 Theorem: for a  continuous function f: (X,d) → (Y, ρ) the graph of f                 

{(x, f(x)): x ∈ X} is a closed subset of X x Y. 

Proof: Given any convergent sequence (xn, f(xn))
n

 in X x Y if  lim
n→∞ 

(xn, f(xn)) =

(a, b) then xn  → a in (X, d)and f(xn) → b  in (Y, d). Continuity of f at a  implies 

b = f(a). So the graph of f is closed.  

3.14 Theorem: If  two continuous functions f, g: (X,d) → (Y, ρ)  agree in a dense 

subset of X, then they agree in the whole space X. 

Proof:  The result follows immediately from the sequential criteria.      

3.15 Theorem: Suppose A be a dense subset of a metric space (X, d) and (Y, ρ) 

be a complete metric space. Then every uniformly continuous function  f: A → Y 

can be uniquely extended to a uniformly continuous function g: X → Y. 
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      Proof: We shall draw the sketch of the proof in the following way: since A is 

dense in X  for any x ∈ X, choose a sequence (an)n from  A converging   to  x. 

Then (f(an))
n

 will be a Cauchy sequence in the complete metric space (Y, ρ).  

Define g(x) =  lim
n

f(an). Then g is well defined. Clearly g extends f. Uniform 

continuity of g can be easily established. Uniqueness follows from theorem 3.13. 

3.16 Definition: For two metric spaces (X, d) and (Y, ρ) a mapping f: (X, d)  →

 (Y, ρ) 

is said to be a homeomorphism if f is bijective , f   and   f −1 are continuous. 

3.17 Definition : (X, d) and (Y, ρ) be  metric spaces and f: X → Y be a function. For 

a point  a ∈ X, and for any positive 𝛿, let us define  Ω(f, B𝛿(a)) =

sup{ρ(f(x), f(y)): x ∈ B𝛿(a), y ∈ B𝛿(a)}. Ω(f, B𝛿(a)) is called oscillation of f over 

B𝛿(a).  

3.18 REMARKS: (1) If f is unbouned in any deleted neighbourhood of the point a, 

then Ω(f, B𝛿(a))  will be infinity. So for a bounded function f,  Ω(f, B𝛿(a)) must be 

finite for every   𝛿.  

(2) If f is a bounded function then the oscillation function Ω(f, B𝛿(a)) is increasing 

function. So lim
𝛿→0

Ω(f, B𝛿(a)) exists and lim
𝛿→0

Ω(f, B𝛿(a)) = inf{Ω(f, B𝛿(a)): 𝛿 > 0}. 

(3) If B𝛿1
(b) ⊂  B𝛿(a)   then Ω (f, B𝛿1

(b)) ≤   Ω(f, B𝛿(a)) . 

3.19 Definition: If f is a bounded function from a metric space X to R, and a  ∈ X, 

then the oscillation of the function f at the point a is defined by lim
𝛿→0

Ω(f, B𝛿(a)) and 

it is denoted by   ω(f, a). 

3.20 Theorem: Suppose  f: (X,d) → (Y, ρ) be a function  and a ∈ X. Then the 

necessary and sufficient condition for the continuity of  f  at a is  ω(f, a) = 0.  

Proof:  Suppose f is continuous at a. For any positive ε there is a positive  𝛿 such 

that d(x, a)  < 𝛿 implies ρ(f(x), f(a)) < 
ε

2
 . Then for any p, q  ∈  B𝛿(a), ρ(f(p), f(q)) ≤

 ρ(f(p), f(a)) +  ρ(f(a), f(q)) < 𝜖.   

So Ω(f, B𝛿(a)) ≤ ϵ  and hence   ω(f, a) = 0.  

Conversely, suppose ω(f, a) = 0. Now for any ϵ > 0, there is some positive ∂ such 

that Ω(f, B𝛿(a)) < 𝜖.  

By definition, ρ(f(x), f(a)) < ε whenever   d(x, a)  < 𝛿. Which shows that f is 

continuous at the point a. 



Lecture Notes on Metric Spaces, G. ADAK 
 

23 
 

3.21  Notation: For a function f: (X,d) → (Y, ρ),  the set {x ∈

X: f is not continuous at the point x} is denoted by Df. 

 

    3.22 Properties: Suppose f: (X,d) → (Y, ρ) be a function. Then 

(i)The set Dn = {x ∈ X ∶   ω(f, x) ≥
1

n
 } is a closed subset of X. 

(ii) The set  Df is an Fσ  set.  

Proof: (i) If x0  ∉  Dn then ω(f, x0) <
1

n
. That is equivalent to inf{Ω(f, B𝛿(a)): 𝛿 >

0} <
1

n
 .  So for any ϵ > 0, there is some positive 𝛿 such that Ω(f, B𝛿(x0)) <

1

n
. 

Then for any x ∈ B𝛿(x0), choose 𝛿1 > 0   such that  B𝛿1
(x) ⊂  B𝛿(x0) . 

Then from the earlier remark   Ω (f, B𝛿1
(x)) ≤ Ω(f, B𝛿(x0)) <

1

n
  implies x ∉  Dn.  

Thus B𝛿(x0) ∩ Dn = ϕ which shows that Dn is a closed set. 

(ii) Observe that Df =  ⋃ Dn
∞
n=1   is the countable union of closed sets. 

    

             We want to now focus on our main problem: whether there be a real 

valued function defined on R which is continuous at all rational points and 

discontinuous at all irrational points. To make the conclusion we will apply Baire’s 

Category theorem. 

3.23 Proposition: There does not exit a function f ∶ [0, 1]  → ℝ  which is 

discontinuous only at all irrational points in [0, 1].  

Proof: We shall prove this by using contradiction. If possible let there be a function  

f ∶ [0, 1]  → ℝ 

such that  Df = [0, 1] \ℚ . From 1.6(ii) Df is an  Fσ set. So [0, 1] \ℚ =  ⋃ Fn
∞
n=1  

where each Fn is a closed set. As Fn ⊂ [0, 1]\ℚ, it contains no interior point. So  

intX(clX(Fn)) = ϕ where X = [0, 1] with the usual metric. Consequently each Fn 

is a nowhere dense set. So [0, 1] \ℚ is a set of first category. 

          Also [0, 1]  ∩ Q is a set of first category. So [0, 1] = ([0, 1]\ℚ) ∪ ([0, 1] ∩

ℚ) is of     first category contradicts the Baire’s category theorem. 

Therefore no such f can be found.  

 

4 Compact Metric Space and Totally Boundedness 
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4.1   Definition:  A family (Eγ)
γ∈Γ

 of open sets in a metric space (X, d) is said to 

be an open cover of a subset E ⊆ X if   E ⊆ ⋃ Eγγ∈Γ .  A sub collection of (Eγ)
γ∈Γ

 is 

called a sub cover  of (Eγ)
γ∈Γ

if it is also an open cover of E.  

       A sub set E ⊆ X is said to be (a) compact if every open cover  of E has a finite 

sub cover. (b) lindelof if every open cover of E has a countable sub cover. 

(c)σ −  compact if every countable open cover of E has a finite sub cover. 

 

4.2 Proposition: Every compact subset of a metric space is closed and bounded. 

Proof: Suppose E  be a compact subset of the metric space (X, d). If p ∉ E, then for 

every x ∈ E, choose an open ball Brx
(x) with center x and an open ball 

Bpx
(p) with center p such that Brx

(x) ∩ Bpx
(p) = ∅. The collection {Brx

(x): x ∈

E} of open cover of E has a finite subcover {Brxi
(xi): i ∈ {1, 2, … , n}}. If U =

 ⋂ Bpxi
(p)n

i=1   and V = ⋃ Brxi
(xi)

n
1=1  then E ⊆ V and p ∈ U and U ∩ V =  ∅ 

showing that p is not a limit point of E which implies E is a closed set. 

 Now the collection  {B1(x): x ∈ E} is an open cover of E which has a finite 

subcover   {B1(xi): i ∈ {1,2, … , n}}. Clearly then  d(E) ≤ n. Thus  E is bounded. 

4.3 Proposition: For a metric space (X, d) the following are equivalent:               (a) 

X is compact.                                                                                                          (b) If 

(Fγ)
γ∈Γ

 be a family of closed subsets of X such that intersection of any finite 

subfamily is nonempty then ⋂ Fγγ∈Γ  ≠  ∅.                                                   Proof: 

(a) ⇒ (b): If ⋂ Fγγ∈Γ =  ∅ then ⋃ (X \Fγ)γ∈Γ = X, where each X \Fγ is an open set 

X. So the family (X \Fγ)
γ∈Γ

 is an open cover of X. Since X is compact, it has a finite 

subcover, say there is a finite subset Γ1   ⊆ Γ such that ⋃ (X \Fγ)γ∈Γ1
= X, which 

implies ⋂ Fγγ∈Γ1
=  ∅ leads to a contradiction. 

(b) ⇒ (a): Suppose   (Gγ)
γ∈Γ

 be an open cover of X. Then ⋃ Gγγ∈Γ = X implies 

⋂ (X  \Gγ)γ∈Γ =  ∅, where X  \Gγ is a closed set. So there is a finite subset Γ1   ⊆ Γ 

such that ⋂ (X  \Gγ)γ∈Γ1
=  ∅ which again implies ⋃ Gγγ∈Γ1

= X. Thus each open 

cover has a finite subcover and so X is compact. 

4.4   Example: ℝ is not compact. 

In fact the cover of ℝ by the open sets (−n, n), for  n ∈  ℕ, can have no finite 

subcover.  

4.5 Proposition: 𝐈 = [0, 1] is a compact set.  
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Proof: Suppose  (Gγ)
γ∈Γ

be an open cover of 𝐈 and let K be the set of all points c in 

𝐈 such that some finite subcollection from (Gγ)
γ∈Γ

covers [0, c]. Clearly 0 ∈ K. Also, 

if c ∈ K and b ≤ c then b ∈ K. Thus K is a sub interval of 𝐈 containing 0. Moreover, 

if c ∈ K, then any finite subcollection from (Gγ)
γ∈Γ

which covers [0, c] also covers 

[0, c + ε for some ε > 0(unless c = 1, in which case we have finished). Thus K is an 

open set in 𝐈. Finally if k is the right end point of K, then k ∈  K, for pick 𝐺𝑖 ∈

(Gγ)
γ∈Γ

 such that k ∈ Gi. Then (k − ε, k] ⊆ Gi for some ε > 0 so that by adding  Gi 

to a finite subcollection  from  (Gγ)
γ∈Γ

 which covers [0, k − ε] we obtain a finite 

subcollection from (Gγ)
γ∈Γ

which covers [0, k]. Now K is a closed subinterval of 𝐈 

which contains 0 and an open set in 𝐈. Thus K = 𝐈. This proves that 𝐈 compact. 

4.6 Theorem: Suppose f: (X,d) → (Y, ρ) be a continuous function and X is a 

compact metric space. Then f(X) is a compact subset of Y.                                     

Proof: Suppose  (Gγ)
γ∈Γ

 be an open cover of f(X). Since f is continuous f −1(Gγ) is 

an open set in X. So (f −1(Gγ))
γ∈Γ

is an open covering of X. X being compact, 

(f −1(Gγ))
γ∈Γ1

= X for some finite subset Γ1 of Γ. This implies  (Gγ)
γ∈Γ1

 is  a finite 

sub cover of (Gγ)
γ∈Γ

.Hence f(X) is a compact subset of Y. 

      

                      The following theorem known as Tychonoff theorem is an important 

theorem to construct different compact spaces. 

4.7  Proposition(Tychonoff): A nonempty product space is compact if and only if 

each factor space is compact. 

4.8 Theorem: Every closed subset of a compact metric space is compact. 

    Proof:  Let Y be a closed subset of a compact metric space (X, d). If  (Fγ)
γ∈Γ

 be a 

family of closed subsets of Y such that intersection of any finite subfamily is 

nonempty then Fγ = Y ∩ Kγ for some closed subset Kγ of X. So each Fγ is closed in 

(X, d). Since (X, d) is compact ⋂ Fγγ∈Γ  ≠  ∅. Hence Y  is compact. 

4.9 Proposition(Heine –Borel Property):In the Euclidean metric space ℝn a 

subset  K  is compact iff it is closed and bounded. 

Proof: Necessary part of this proposition follows from proposition 4.2. For the 

sufficiency suppose  K be a closed and bounded subset of ℝn. Then K is a closed 

subset of an n − fold  product [−c, c]x[−c, c]x … . x[−c, c] of intervals for some c ∈
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ℝ. Now each interval [−c, c] is homeomorphic with [0,1] which is compact. So 

each such n − fold is compact, by Tychonoff theorem. K being a closed subset of 

this n − fold it is compact.  

4.10    Theorem: Suppose f: (X,d) → (Y, ρ) be a continuous function and X is a 

compact metric space. Then f is uniformly continuous.                                           

Proof: Choose ε > 0 arbitrarily. Now for each x ∈ X using continuity of f, there is a 

δx > 0 such that for any  y ∈ X  with d(x, y)  <  δx implies   ρ(f(x), f(y)) < 
ε

2
. Now 

the family { Bδx
2

(x): x ∈ X } being  an open cover of the compact set X there are 

finite number of points, say x1, x2, … xn in X such that {Bδxi
2

(xi): i = 1,2, … n} also 

covers X.  Let  δ =
1

2
min{δxi

: i = 1,2, … n }. Let  u, v ∈ X, and  d(u, v) < 𝛿. If u ∈

Bδxk
2

(xk)  then  d(xk, v) ≤ d(xk, u) + d(u, v) <
δxk

2
+

δxk

2
=  δxk

. Then 

ρ(f(u), f(v)) ≤  ρ(f(u), f(xk)) + ρ(f(xk), f(v)) <
ε

2
+

ε

2
= ε showing that f is 

uniformly continuous.   

4.11 Theorem: Suppose f: (X,d) → (Y, ρ) be a continuous bijective function and X is 

a compact metric space. Then f  is a homeomorphism.                                     Proof: 

We have only to show that f −1 is continuous. Suppose K be a closed subset in 

(X, d). Then from 4.3 K is a compact subset of  (X, d) which implies  f(K) is a 

compact set in (Y, ρ). Hence f(K) is closed in  (Y, ρ). So f −1 is continuous. 

4.12  Definition: A metric space X is said to be totally bounded if for every ϵ > 0, 

there is a finite family of open balls of radius ϵ which covers X . A subset Y of X is 

called totally bounded provided that Y as a metric subspace of X,  is totally 

bounded.   

4.13  Remark: For a subset Y of  a metric space X, by an ϵ − net for Y we mean a 

finite family of open balls (Bϵ(xn))
k

n=1
 with center  xn ∈ X which covers Y. 

Consequently a metric subspace Y is totally bounded if and only if there is  a finite 

ϵ − net for Y.  Also from the existence of finite  ϵ − net it is clear that the diameter 

of a totally bounded metric space is finite and so every totally bounded metric 

space is bounded. 

4.14  Example: Consider the metric space  X =  l2 of all sequences in ℂ which are 

square summable.  
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Here the closed unit ball B = {x = (xn)n:   (∑ |xn|2 ∞
n=1 )

1

2 ≤  1} is bounded. But for 

each n ∈ ℕ, if en = (δk
n)k (where δk

n is the Kronecker delta) then ρ(en, em) =

 √2 for m ≠ n. Thus  B can not be covered by a finite number of balls radius less 

than ½ . So B  is not totally bounded. 

   

           In the Euclidean metric space the following proposition tells something 

different: 

4.15 Proposition: A subset of Euclidean space ℝn is totally bounded if and only if it 

is bounded. 

4.16 Definition: A metric space (X, d) is said to be sequentially compact if every 

sequence in X has a subsequence which converges to a point of X. 

4.17 Theorem: A metric space (X, d) is totally bounded if and only if every 

sequence in X contains a Cauchy subsequence. 

4.18 Theorem:  In a metric space (X, d)  the following are equivalent:                      

(a)  X is complete and totally bounded.                                                                                    

(b) X is compact.                                                                                                                         

(c)  X is sequentially compact.  

   Proof: (a) implies (b): Suppose on the contrary that  (Gγ)
γ∈Γ

 be an open       cover 

of X which has no finite sub cover. Since X is totally bounded there is a finite family 

of open balls of radius < ½ that cover X. At least one of that family can’t be covered 

by a finite subfamily of (Gγ)
γ∈Γ

. Let us denote the closure of this ball by F1. Again 

using totally boundedness of X there is a finite family of open balls of radius < ¼  

that cover X(and hence coverF1) . At least one of that family whose intersection 

with F1 can’t be covered by a finite subfamily of (Gγ)
γ∈Γ

. Let us denote the closure 

of this ball by F2. Continuing this process we obtain a descending sequence of 

nonempty closed sets (Fn)n with diam(Fn )  → 0.  Since  X is complete from 

Cantor’s intersection theorem, ⋂  Fnn  is a singleton set which contradicts that no 

Fn  can be covered by finite subfamily of (Gγ)
γ∈Γ

. So (X, d) is compact. 

 (b) implies (c): If  (xn)nbe any sequence in (X, d) then for every index n, let Fn =

clX{xk: k ≥ n}. Then (Fn)n is a descending sequence of nonempty closed sets and 

so it has finite intersection property. By compactness of  X ⋂  Fnn  contains a point, 

say x0  ∈ X. Clearly there is a subsequence of (xn)n which converges to x0.  
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                 (c) implies (a): Since  X is sequentially compact, every sequence in X  has a 

convergent and hence a Cauchy subsequence.  From theorem 4.12  it follows 

that X is totally bounded. To show that X is complete, let (xn)n be a Cauchy 

sequence. From sequential compactness  (xn)n has a convergent subsequence 

and so (xn)n itself is convergent.  

                 5. Connectedness:  

          The metric space version of famous Intermediate Value property of a real 

valued continuous  function can be proved in a simpler way using connectedness. 

Roughly speaking in a metric space  (X, d)  a subset will be connected if it cannot 

be the union of more than one piece of open sets. 

                      5.1 Definition:  Given a  metric space  (X, d)   a pair (U, V) of open sets 

is said       to be a separation of  X if X =  U ∪  V,    U ≠ ∅, V ≠ ∅, U ∩ V = ∅. A 

metric space (X, d) is said to be disconnected if there is a separation of X. A metric 

space (X, d) is said to be connected if it is not disconnected. A subset E of a metric 

space (X, d) is said to be connected(disconnected) if the metric subspace (E, d) is 

connected(disconnected). 

         5.2 Proposition: In  a  metric space  (X, d)  a pair (U, V) of open sets is a 

separation of  X iff  X =  U ∪  V,    U ≠ ∅, V ≠ ∅, U ∩ cl(V)  = cl(U) ∩ V = ∅. 

     Proof: Suppose  (U, V)  is a separation of  X. Then X =  U ∪  V,    U ≠ ∅, V ≠ ∅. 

Also U ∩ V = ∅ ⇒ U is a subset of the closed set  X \ V ⇒  cl(U) ⊆ X \ V. So   

cl(U) ∩ V = ∅.Similarly  U ∩ cl(V)  = ∅. The converse is trivial. 

  5.3 Proposition: A  metric space  (X, d) is connected if and only if it has no 

nontrivial subset which is both open and closed. 

          Proof: Suppose (X, d) is disconnected. Then X =  U ∪  V,     U ∩ V = ∅   

for some nonempty open sets U and V. Evidently U =  X \ V  is a closed set 

implies that X has a nontrivial clopen set. Conversely if X has a nontrivial clopen 

subset say, U then U and X\ U  both are nontrivial open sets which is a separation 

of X, showing that X is a disconnected space. 

         5.4 Example: Any set X with more than one element is a disconnected space 

with respect to discrete metric. Hence the set ℕ of natural numbers with respect to 

the Euclidean metric is disconnected. 



Lecture Notes on Metric Spaces, G. ADAK 
 

29 
 

      5.5 Theorem: Suppose (X, d)be a metric space and A ⊆ B ⊆ clX(A). If A is a 

connected subset of (X, d) then B is also connected subset of (X, d).Hence closure 

of any connected subset is also a connected subset. 

Proof: It is enough to show that clX(A) is connected(since if A ⊆ B ⊆ clX(A) then 

 B = clB(A) and we can replace X by B  ). Suppose clX(A) = U ∪ V where 

U and V are disjoint nonempty open sets in clX(A). Then A = (U ∩ A) ∪ (V ∩ A) 

and the latter are disjoint nonempty open sets in A . Thus if clX(A) is disconnected, 

so is A.  

5.6 Proposition: The only connected subsets of ℝ(with respect to Euclidean metric) 

are intervals(both proper and improper). 

     Proof: Suppose K be a connected subset of ℝ containing more than one point. If 

x, y ∈ K and x < y, and if  z ∈ ℝ such that x < z < y we must show that z ∈ K. 

For if z ∉ K then the pair (U, V) where U = (−∞, z) ∩ K  and V = (z, ∞) ∩ K is a 

separation of K showing  that K is disconnected. Thus K is an interval. 

Conversely if K is an interval in view of proposition 5.5 it is enough to show that K  

is connected if K  is a  closed bounded interval. Suppose K = [0,1], with K = U ∪ V 

where U and V are nonempty disjoint open sets in K and  0 ∈ U. U being an open 

set some open neighbourhood of 0 is contained in U. So 𝑐 = inf V can not be 0. 

Now either c ∈ U or c ∈ V, and so there is a neighbourhood  of c  which is 

contained either in U or in V. But any neighbourhood of c contains a point of U(to 

the left of c) and a point of V(to the right of c).a contradiction. So K is connected. 

5.7 Definition: Suppose (X, d)be a metric space. A subset  A ⊆ X is said to be path 

connected if for any two point a, b ∈ X, there is a continuous function f: [0,1]  →  X 

such that f([0,1] ) ⊆  A, f(0)  =  a, f(1) = b.  

5.8 Proposition: Every path connected metric space is connected. 

Proof: Suppose (X, d)be path connected. If possible let X be disconnected. Then 

there is a nontrivial clopen subset U of X. Suppose p ∈ U, q ∈ X\U. Then there is 

a continuous function f: [0,1]  →  X such that   f(0)  =  p, f(1) = q. Since f is 

continuous, f −1(U) and f −1(X \U) are disjoint nonempty open sets forms a 

separation of [0,1] which contradicts the fact that [0,1] is connected.  So X is 

connected. 
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5.9 Examples: a) ℝn is a connected metric space. 

b) The graph of the topologists sine curve is connected but not path connected. 

Here Г = {(x, 0): x ≤ 0} ∪ {(x, sin
1

x
): x > 0)} is the graph of the function f: ℝ →

ℝ  defined by f(x) = {
0                if x ≤ 0

sin (
1

x
) if x > 0

. The set Г is not pat connected as the 

points (0,0) and (1/π, 0) are in Г but there is no continuous function f: [0,1]  →  Г 

such that f(0)  = (0,0) , f(1) = (1/π, 0). But Г1 = {(x, sin(1/x): x ≠ 0)} is path 

connected and hence connected. It can be verified that Г1 ⊆ Г ⊆  cl(Г1).Then Г is 

connected. 

5.10 Theorem: Continuous image of a connected space is connected. 

Proof: Suppose (X, d) is a connected metric space and f: X → Y  is a continuous 

map where (Y, ρ) is any metric space. Then f(X) is connected as a subspace of 

(Y, ρ). Indeed if (U, V) of open sets is a separation of  f(X) then f −1(U) and f −1(V)  

are nontrivial open sets in X and f −1(U) ∪ f −1(V)  =  X showing the 

disconnectedness of X.  

  5.11 Corollary: If f: [a, b]  → ℝ is a continuous function and f(a) ≠ f(b) then f 

assumes every values between f(a) and f(b). 

Proof: Since f is continuous and [a, b] is a connected subset of ℝ, from theorem 5.9 

f([a, b]) is connected subset of ℝ and so it must be an interval. Hence the result. 

             6.  Fixed Point Theorems and Their Applications. 

6.1  Definition: A point x in a set X is said to be a fixed point of the mapping T: X →

X if T(x) = x. 

        The fixed point of a real valued  function of a real  variable x corresponds to a 

point in the plane where the graph of the function intersects with the line y = x.  

Analytically, using intermediate value property, also we can ensure the existence of 

a fixed point of a continuous map from [a, b]  to [a, b]. Brouwer’s fixed point 

theorem ensures that any continuous map from a compact convex subset of Rn to 

itself has a fixed point .   In this section our aim is to impose certain conditions on 

the mapping to ensure the fixed point in a  metric space. 
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6.2 Definition: Given a metric space (X, d) a mapping T: X → X is said to be (i) 

Lipshcitz if d(T(x), T(y)) ≤ c d(x, y) for all x, y ∈ X, for some positive real number 

c (c is called a Lipschitz constant).                            (ii) a contractive mapping if 

d(T(x), T(y)) < 𝑑(x, y) for all x, y ∈ X (iii) a contraction  if d(T(x), T(y)) ≤

c d(x, y) for all x, y ∈ X,  for some 0 < 𝑐 < 1. 

6.3 Theorem (Banach Contraction Principle): If (X, d) is a complete metric space  

and the mapping T: X → X  is  a contraction,  then T always has a unique fixed 

point.                                                                                                                                 

Proof:   Fix any x  from  X. Let us denote this element by x0. Denote T(x0)  by x1. 

For any positive integer n , inductively defining xn denote T(xn) by xn+1 .  The 

sequence  (xn)n is a Cauchy sequence, follows from the contractive property of T. 

X being complete, sequence  (xn)n is convergent. Suppose lim
n→∞

xn = z.      Then  

T(z) =  T ( lim
n→∞

xn) = lim
n→∞

T(xn) =  lim
n→∞

xn+1 = z. 

Uniqueness follows from  d(z, y) =  d(T(z), T(y)) ≤ c d(z, y) can not be possible 

unless z = y.  

6.4 Example:  Suppose f: ℝ →  ℝ  be defined by f(x) =
1

2
arctan x  ∀ x ∈  ℝ. Then  

|f(x) −  f(y)| =
1

2
|tan−1 x − tan−1 y| ≤

1

2
|x − y|  ∀ x, y ∈ ℝ . So f is a contracting 

mapping on ℝ. By Banach’s theorem  arctan x = 2x for some x ∈ ℝ.  

6.5 Corollary: If (X, d) is a complete metric space  and for the mapping T: X → X  

there is a positive integer k such that  Tk: X → X is  a  contraction,  then T always 

has a unique fixed point.                             

  Proof: Since Tk: X → X is  a  contraction, from Banach’s Contraction Principle Tk 

always has unique fixed point in  x ∈ X.  Then Tk(T(x)) =  T (Tk(x)) = T(x) 

implies  T(x) is a fixed point of Tk. From uniqueness property it follows that  

T(x) = x. So x is a fixed point of T. Since any fixed point of T is also a fixed point of 

Tk  x is the unique fixed point of T.  

6.6 Example: Suppose f: ℝ →  ℝ  be defined by f(x) =
π

2
 + x − arctan x  ∀ x ∈  ℝ.  

Then |f(x) −  f(y)| = |x − y − (tan−1 x − tan−1 y)| < |x − y|  ∀ x, y ∈ ℝ . So f is a 

contracting mapping on the complete metric space.  But f  has no fixed point in ℝ.   
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6.7 Example: Suppose f: ℝn  →  ℝn  be  a contraction. Let g: ℝn  →  ℝn  be defined 

by g(x) = x − f(x)  ∀ x ∈ ℝn . Then g is a homeomorphism.                                                                                           

Proof:  Since f is a contraction there is some c > 0  such that  |f(x) −  f(y)| <

𝑐|x − y| ∀ x, y ∈ ℝn . Then  for x ≠ y  in ℝn  g(x) −  g(y) ≠ 0.  So g   is injective. 

To show that g is onto, suppose u ∈ ℝn. Then the mapping fu: ℝn  →  ℝn  defined 

by fu(x) = u + f(x) is  a contraction. By Banach’s Contraction Priciple, fu has a 

fixed point x  in ℝn. Then g(x) = u showing that g is onto. From the definition of g 

it is clear that g and g−1 are continuous. Hence g is a homeomorphism.                                                                                                                                                                                                        

The contraction mapping principle will now be used to obtain a general result 

about the existence of a unique solution to a differential equation of the form 
dy

dx
=

f(x, y) satisfying certain conditions.  

6.8 Definition: Suppose  f be  a continuous function a rectangle R = [x0 − a, x0 +

a]x[y0 − b, y0 + b]. A real valued function φ defined on an interval I is said to be a 

solution of the initial value problem 
dy

dx
= f(x, y), y(x0) = y0 … … … … … (1) if 

 for x ∈ I, f(x, φ(x) ∈ R and φ′(x) = f(x, φ(x)) with φ(x0) = y0.                                         

The following proposition can be easily established.           

6.9 Proposition: A function φ is a solution of the initial value problem (1) on an 

interval I if and only if it is a solution of the integral equation φ(x) = y0 +

∫ f(x, φ(x))dx  
x

x0
on I … … … … … (2) 

6.10 Theorem (Existence and Uniqueness due to E. Picard): Suppose  f be  a 

continuous function a rectangle R = [x0 − a, x0 + a]x[y0 − b, y0 + b] satisfying 

|f(x, y)| ≤ K ∀ (x, y) ∈ R and |f(x, y1) −  f(x, y2) ≤ M for some K > 0, 𝑀 > 0. 

Let h = min (a,
1

2M
, b/K). Then there is a unique  continuously differentiable 

function φ: (x0 − h, x0 + h) → ℝ  on such that φ(x0) = y0 and φ′(x) = f(x, φ(x)) 

for all x ∈  (x0 − h, x0 + h)  

Proof:  Let I = [x0 − h, x0 + h] and  X = {φ ∈ C(I): |φ(x) − y0| ≤ b }    ∀ x ∈ I.  

Let us  define T: X → C(I)  

                              by  T(φ)(x) =  y0 + ∫ f(x, φ(x))dx ,   
x

x0
∀ x ∈ I.     

   Since C(I) is complete and  X is a closed subspace of C(I), X is also complete.    

Also for each φ ∈ X |T(φ(x) − y0| = |∫ f(x, φ(x))dx 
x

x0
| ≤ hK ≤ b implies T(X) ⊆

X.   To show that T is a contraction observe that for φ1, φ2  ∈ X, |T(φ1(x)) −
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 T(φ2(x))| |∫ f(x, φ1(x))dx 
x

x0
– ∫ f(x, φ2(x))dx

x

x0
| ≤ Mhρ(φ1 , φ2)      where ρ is 

the supremum metric on  C(I).  By Banach Contraction Principle T has a unique 

fixed point  φ ∈ X .  Clearly φ is the desired function.                      
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