LECTURE NOTES ON FOURIER SERIES

GOPAL ADAK

Assistant Professor, Department of Mathematics, St. Paul's Cathedral Mission College

Introduction: In 1807, Fourier astounded some of his contemporaries by asserting that an "arbitrary" function could be expressed as a linear combination of sines and cosines. These linear combinations, now called Fourier series, have become an indispensable tool in the analysis of certain periodical phenomena(such as vibrations, and planetary and wave motion)which are studied in Physics and Engineering.
1.1 DEFINATION: A trigonometric series is of the form $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ where the co-efficients $\mathrm{a}_{0}, \mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}$ are constants.

It can be shown that every periodic function of x satisfying certain very general conditions can be represented in the above form.
1.2 DEFINATION: Let $\mathrm{f}:[-\pi, \pi] \rightarrow \mathrm{R}$ be a bounded function and $\mathrm{P}=\left\{-\pi=\mathrm{t}_{0}<\mathrm{t}_{1}<\cdots<\mathrm{t}_{\mathrm{n}}=\pi\right\}$ be a partition of $[-\pi, \pi]$. For any points $x_{i} \in\left[t_{i-1}, t_{i}\right](i=1,2, \ldots n) \quad S(P, f)=\sum_{i=1}^{i=n} f\left(x_{i}\right)\left(t_{i}-\right.$ $\left.t_{i-1}\right)$ is called Riemann sum of the function f. If $\lim _{\|P\| \rightarrow 0} S(P, f)$ is finite then f is said to be Riemann integrable on $[-\pi, \pi]$ and the finite limit is denoted by $\int_{-\pi}^{\pi} f$. We call f is integrable on $[-\pi, \pi]$ when it is Riemann integrable on $[-\pi, \pi]$.
1.3 DEFINATION: Let $\mathrm{f}:[-\pi, \pi] \rightarrow \mathrm{R}$ be unbounded in $[-\pi, \pi]$ and there are finite number of points $-\pi=t_{0}<t_{1}<\cdots<t_{n}=\pi$ such that f is bounded and integrable in every closed sub interval contained in each open interval $\left(t_{i-1}, t_{i}\right)$. If $\lim _{\delta_{i} \rightarrow 0} \int_{t_{i-1}+\delta_{i}}^{t_{i}-\delta_{i}}|f|$ exists finitely for each i then f is said to be absolutely convergent in $[-\pi, \pi]$.
1.4 DEFINATION: Let $\mathrm{f}:[-\pi, \pi] \rightarrow \mathrm{R}$ be an integrable function on $[-\pi, \pi]$ or if unbounded on $[-\pi, \pi]$ let the improper integral $\int_{-\pi}^{\pi} f(x) d x$ be absolutely convergent. Then the trigonometric series $\frac{1}{2} a_{0}+$ $\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ is called the Fourier series in $[-\pi, \pi]$ corresponding to the function f, where a_{0}, a_{n}, b_{n}, called Fourier co-efficients, are given by $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x, a_{n}=$ $\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \quad n \in N$.
1.5 THEOREM: Suppose $f:[-\pi, \pi] \rightarrow$ R be an integrable function on $[-\pi, \pi]$ or if unbounded on $[-\pi, \pi]$ let the improper integral $\int_{-\pi}^{\pi} f(x) d x$ be absolutely convergent. For $n \in N$ let $S_{n}(x)=\frac{a_{0}}{2}+$ $\sum_{\mathrm{k}=1}^{\mathrm{n}}\left(\mathrm{a}_{\mathrm{k}} \cos k x+\mathrm{b}_{\mathrm{k}} \sin \mathrm{kx}\right)$ be the n th partial sum of the Fourier series and $\mathrm{T}_{\mathrm{n}}(\mathrm{x})=\frac{\mathrm{c}_{0}}{2}+$
$\sum_{\mathrm{k}=0}^{\mathrm{n}}\left(\mathrm{c}_{\mathrm{k}} \cos \mathrm{kx}+\mathrm{d}_{\mathrm{k}} \sin \mathrm{kx}\right)$ be the n th partial sum of any trigonometric series. Then $\int_{-\pi}^{\pi}\left(\mathrm{f}-\mathrm{S}_{\mathrm{n}}\right)^{2} \leq$ $\int_{-\pi}^{\pi}\left(f-T_{n}\right)^{2}$. Equality holds if and only if $a_{k}=c_{k}$ and $b_{k}=d_{k}$ for all k.
(That is to say among all functions T_{n}, S_{n} will give the best possible mean square approximation to f.)

1.6 Worked out examples:

1.6.1 Find the Fourier series of $f(x)=x, x \in[-\pi, \pi]$

Ans: Since f is continuous on $[-\pi, \pi]$ it is bounded and integrable on $[-\pi, \pi]$. Then the Fourier series of f in $[-\pi, \pi]$ is $\quad \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$

Where $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=0$ (since f is odd)

$$
\mathrm{a}_{\mathrm{n}}=\frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{f}(\mathrm{x}) \cos \mathrm{nxdx}=0(\text { since } \mathrm{f} \text { is odd })
$$

$$
\mathrm{b}_{\mathrm{n}}=\frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{f}(\mathrm{x}) \sin \mathrm{nx} \mathrm{dx}
$$

$$
=\frac{2}{\pi} \int_{0}^{\pi} x \sin n x d x=\frac{2}{\pi}\left\{\left[-\frac{x}{n} \cos n x\right]_{0}^{\pi}+\frac{1}{n} \int_{0}^{\pi} \cos n x d x\right\}=-\frac{2}{n} \cos n \pi
$$

$$
=\left\{\begin{array}{c}
-\frac{2}{n} \text { if } n \text { is even } \\
\frac{2}{n} \text { if } n \text { is odd }
\end{array}\right.
$$

Hence the Fourier series for f in $[-\pi, \pi]$ is $2\left[\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\frac{\sin 3 x}{3}-\cdots.\right]$.
1.7 Dirichlet's conditions : A real valued function f in $[a, b]$ is said to satisfy Dirichlet's condition if either

1) f is bounded in [a, b] and piecewise monotone in [a, b] i.e. the interval can be broken up into a finite number of open subintervals in each of which f is monotonic,

Or,2) f has finite number of points of infinite discontinuity in $[a, b]$, but when arbitrary small neighbourhoods of these points of discontinuity are excluded, $\mathrm{f}(\mathrm{x})$ is bounded in the remainder of the interval and in each remaining interval f is piecewise monotone and $\int_{a}^{b} f(x) d x$ is absolutely convergent.
1.8 THEOREM: If f is a periodic function of period 2π andsatisfies Dirichlet's conditions in $[-\pi, \pi]$, then at $\mathrm{x}=\mathrm{c}$ the Fourier series $\frac{1}{2} \mathrm{a}_{0}+\sum_{\mathrm{n}=1}^{\infty}\left(\mathrm{a}_{\mathrm{n}} \cos \mathrm{nx}+\mathrm{b}_{\mathrm{n}} \sin \mathrm{nx}\right)$ converges to $\frac{1}{2}\{\mathrm{f}(\mathrm{c}-0)+\mathrm{f}(\mathrm{c}+0)\}$ for $-\pi<c<\pi ; \quad$ and to $\frac{1}{2}\{\mathrm{f}(\pi-0)+\mathrm{f}(-\pi+0)\}$ for $\mathrm{c}= \pm \pi$.

1.9 Worked out examples:

1.9.1. Obtain the Fourier series expansion of the function $f(x)=x \sin x$ on $[-\pi, \pi]$. Hence deduce that $\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\cdots$

Ans. Here f is bounded and integrable in $[-\pi, \pi]$. So the Fourier series expansion for $f(x)$ is $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad$ where $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin x d x=\frac{2}{\pi}\left\{[-x \cos x]_{0}^{\pi}+\right.$ $\left.\int_{0}^{\pi} \cos x d x\right\}=\frac{2}{\pi} \cdot \pi=2 ;$
for $n \in N, a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \sin x \cos n x d x=\frac{1}{\pi} \int_{0}^{\pi} x(\sin (n+1) x-\sin (n-$

1) $x) d x=$
$\left\{\begin{array}{c}\frac{1}{\pi}\left\{\left[-\frac{x \cos 2 x}{2}\right]_{0}^{\pi}+\frac{1}{2} \int_{0}^{\pi} \cos 2 x d x\right\}=-\frac{1}{2} \text { if } n=1 \\ \frac{1}{\pi}\left\{\left[\frac{x(. \cos (n-1) x)}{n-1}-x \cdot \frac{\cos (n+1) x}{n+1}\right]_{0}^{\pi}+\int_{0}^{\pi}\left[\frac{\cos (n+1) x}{n+1}-\frac{\cos (n-1) x}{n-1}\right] d x\right\}=(-1)^{n-1}\left[\frac{1}{n-1}-\frac{1}{n+1}\right]=\frac{(-1)^{n-1} 2}{n^{2}-1} \text { if } n \neq 1\end{array}\right.$
For $\mathrm{n} \in \mathrm{N}, \mathrm{b}_{\mathrm{n}}=\frac{1}{\pi} \int_{-\pi}^{\pi} \mathrm{f}(\mathrm{x}) \sin \mathrm{nx} \mathrm{dx}=0(\operatorname{Sincef}(\mathrm{x}) \sin \mathrm{nx}$ is an odd function $)$.
Hence the Fourier series corresponding to f in $[-\pi, \pi]$ is
$\mathrm{f}(\mathrm{x}) \sim 1-\frac{1}{2} \cos \mathrm{x}+2 \sum_{\mathrm{n}=2}^{\infty} \frac{(-1)^{\mathrm{n}-1}}{\mathrm{n}^{2}-1} \cos \mathrm{nx}$.
Here f is an even function, so f ' is an odd function. Hence f ' is symmetric about origin.
Now $f^{\prime}(x)=\sin x+x \cos x>0$ in $\left(0, \frac{\pi}{2}\right)$ and <0 in $\left(\frac{\pi}{2}, \pi\right)$. Hence f is piecewise monotone in $[-\pi, \pi]$.So f satisfies Dirichlet's conditions in $[-\pi, \pi]$. Since f is continuous at $\frac{\pi}{2}$,

$$
f\left(\frac{\pi}{2}\right)=1-\frac{1}{2} \cos \left(\frac{\pi}{2}\right)+2 \sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n^{2}-1} \cos n\left(\frac{\pi}{2}\right)
$$

$\therefore \frac{\pi}{2}=1+\frac{2}{2^{2}-1}-\frac{2}{4^{2}-1}+\frac{2}{6^{2}-1}-\cdots$
This implies $\frac{\pi}{4}=\frac{1}{2}+\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{5.7}-\cdots$
1.9.2. Find the Fourier series of \mathbf{f} where $f(x)=\left\{\begin{array}{cc}x-\pi & \text { if }-\boldsymbol{\pi}<x<0 \\ \boldsymbol{\pi}-\mathbf{x} & \text { if } \mathbf{0} \leq \mathbf{x} \leq \boldsymbol{\pi}\end{array}\right.$

Ans. Here f is bounded and integrable in $[-\pi, \pi]$. So the Fourier series $f o r f(x)$ is
$\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad$ where $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi}\left[\int_{-\pi}^{0}(x-\pi) d x+\int_{0}^{\pi}(\pi-x) d x\right]$ $\frac{1}{\pi}\left\{\left[\frac{x^{2}}{2}-\pi x\right]_{-\pi}^{0}+\left[\pi x-\frac{x^{2}}{2}\right]_{0}^{\pi}\right\}=\frac{1}{\pi}\left(-\frac{3 \pi^{2}}{2}+\frac{\pi^{2}}{2}\right)=-\pi$
for $n \in N, a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi}\left[\int_{-\pi}^{0}(x-\pi) \cos n x d x+\int_{0}^{\pi}(\pi-x) \cos n x d x\right]=$ $\frac{1}{\pi}\left\{\left[\frac{\mathrm{x}-\pi}{\mathrm{n}} \sin \mathrm{nx}\right]_{-\pi}^{0}+\left[\frac{\pi-x}{\mathrm{n}} \sin \mathrm{nx}\right]_{0}^{\pi}-\frac{1}{\mathrm{n}}\left[\int_{-\pi}^{0} \sin \mathrm{nxdx}-\int_{0}^{\pi} \sin n \mathrm{xdx}\right]\right\}=\frac{1}{\mathrm{n}^{2} \pi}\left\{[\cos n \mathrm{n}]_{-\pi}^{0}-[\cos n x]_{0}^{\pi}\right\}=$ $\frac{1}{\mathrm{n}^{2} \pi}\left\{1-(-1)^{\mathrm{n}}-(-1)^{\mathrm{n}}+1\right\}=\frac{2}{\mathrm{n}^{2} \pi}\left(1-(-1)^{\mathrm{n}}\right)$.

For $n \in N, b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi}\left[\int_{-\pi}^{0}(x-\pi) \sin n x d x+\int_{0}^{\pi}(\pi-x) \sin n x d x\right]=$ $\frac{1}{\pi}\left\{\left[-\frac{x-\pi}{n} \cos n x\right]_{-\pi}^{0}-\left[\frac{\pi-x}{n} \cos n x\right]_{0}^{\pi}+\frac{1}{n}\left[\int_{-\pi}^{0} \cos n x d x-\int_{0}^{\pi} \cos n x d x\right\}=\frac{2}{n}\left(1-(-1)^{n}\right)\right.$ So the Fourier series of $f(x)$ is $f(x) \sim-\frac{\pi}{2}+\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\ldots\right)+4\left(\frac{\sin x}{1}+\frac{\sin 3 x}{3}+\cdots\right)$

1.9.3 Obtain the Fourier series expansion of $f(x)$ in $[-\pi, \pi]$ where

$\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}0 & -\pi \leq x<0 \\ \frac{1}{4} \pi x & 0 \leq x \leq \pi\end{array}\right.$. Hence show that $1+\frac{2}{3^{2}}+\frac{2}{5^{2}}+\cdots \quad=\frac{\pi^{2}}{8}$
Ans. Hints. $a_{0}=\frac{\pi^{2}}{8}, \quad a_{n}=\frac{1}{4 n^{2}}\left((-1)^{n}-1\right), b_{n}=-\frac{\pi}{4 n}(-1)^{n}$
The Fourier series expansion of $\mathrm{f}(\mathrm{x})$ in $[-\pi, \pi]$ is $\frac{\pi^{2}}{16}-\frac{1}{2}\left[\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right]+\frac{\pi}{4}\left[\frac{\sin x}{1}-\frac{\sin 2 x}{2}+\right.$ $\left.\frac{\sin 3 x}{3}-\cdots\right]$. The function f is bounded and monotonic in $[-\pi, \pi]$. So f satisfies Dirichlet's conditions in $[-\pi, \pi]$. Also f is continuous at 0 . So $f(0)=\frac{\pi^{2}}{16}-\frac{1}{2}\left[\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots\right]$

1.9.4. Find the Fourier series expansion of periodic function $f(x)$ with period 2π defined by

$\mathbf{f}(\mathbf{x})=\left\{\begin{array}{cc}\mathbf{0}, & -\boldsymbol{\pi}<x<a \pi \\ \mathbf{1}, & \mathbf{a} \leq \mathbf{x} \leq \mathbf{b} . \\ \mathbf{0}, & \mathbf{b}<x<\pi\end{array}\right.$
$\sum_{n=1}^{\infty} \frac{\sin (b-a)}{n}=\frac{\pi-b+a}{2}$.
Ans. Hints. Define f at $x=\pi$ and at $x=-\pi$ as $f(-\pi)=0=f(\pi)$
The function f is bounded and integrable in $[-\pi, \pi]$. The Fourier series of $f(x)$ is $\frac{1}{2} a_{0}+$ $\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \quad$ where $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi}(b-a), a_{n}=\frac{1}{n \pi}[\sin n b-\sin n a], b_{n}=$ $\frac{1}{n \pi}[\cos n a-\cos n b]$. The Fourier series of $f(x)$ is $\frac{1}{2 \pi}(b-a)+$
$\frac{1}{\pi} \sum_{n=1}^{\infty}\left(\frac{1}{n}[(\sin n b-\sin n a) \cos n x+(\cos n a-\cos n b) \sin n x]\right)$.
Here f is piecewise monotone and bounded in $[-\pi, \pi]$. So f satisfies Dirichlet's conditions in $[-\pi, \pi]$
Since f is periodic function of period 2π, so $f(4 \pi+a)=f(a)$. Now the Fourier series for $f(x)$ converges at $x=4 \pi+$ a to $\frac{1}{2}[f(a+0)+f(a-0)]=\frac{1}{2}$ That is the sum of the series at $x=4 \pi+a$ is $\frac{1}{2}$

At $x=b$, the Fourier series converges to $\frac{1}{2}[f(b+0)+f(b-0)]=\frac{1}{2}$. Hence $\frac{1}{2}=\frac{b-a}{2 \pi}+$ $\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin n(b-a)}{n}$. So $\sum_{n=1}^{\infty} \frac{\sin n(b-a)}{n}=\frac{\pi-b+a}{2}$.
1.9.5 Let $f:[-\pi, \pi] \rightarrow R$ be defined as follows: $f(x)=\left\{\begin{array}{cc}-\cos x, & -\pi \leq x<0 \\ \cos x, & 0 \leq x \leq \pi\end{array}\right.$. Obtain the Fourier series for the function $f(x)$. Hence find the sum of the series $\frac{2}{1.3}-\frac{6}{5.7}+\frac{10}{9.11}-\cdots$

Ans. Hints. $\mathrm{a}_{0}=0, \mathrm{a}_{\mathrm{n}}=0, \mathrm{~b}_{\mathrm{n}}=\frac{\frac{1}{\pi} 4 \mathrm{n}}{\mathrm{n}^{2}-1}$ if n is even $\mathrm{b}_{\mathrm{n}}=0$ if nis odd. At $\mathrm{x}=$ $\frac{\pi}{4}$ the sum of the series is $\frac{\pi}{4 \sqrt{2}}$
1.9.6. Show that the even function $f(x)=$
$|x|$ has a Fourier cosine series in $[-\pi, \pi]$ of the form $\frac{\pi}{2}-\frac{4}{\pi}\left\{\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\cdots\right\}$.Hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$.
1.9.7. Prove that the odd function $(x)=e^{x}-e^{-x}, x \in$ $[-\pi, \pi]$ has a Fourier sine series of the form $\frac{4(\sinh \pi)}{\pi}\left[\frac{\sin x}{1^{2}+1}-\frac{2(\sin 2 x)}{2^{2}+1}+\cdots\right]$. Hence show that $\frac{1}{1^{2}+1}-\frac{3}{3^{2}+1}+\frac{5}{5^{2}+1}+\cdots=\pi /\left(4 \cosh \frac{\pi}{2}\right)$

Fourier sine and cosine series:
If f is a real valued function on $[0, \pi]$ which is bounded and integrable then the series of the form $\sum_{n=1}^{\infty} b_{n} \sin n x$ is called a Fourier sine seriers, if $b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x$. And the series of the form $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x$ is called a Fourier cosine seriers, if $a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x$.
1.9.8. The function f is defined for $0<x<2 \pi$ as $f(x)=\left\{\begin{array}{ll}(x-\pi)^{2} & \text { when } 0<x<\pi, \\ \pi^{2}, & \text { when } \pi \leq x \leq 2 \pi .\end{array}\right.$ Hence deduce the value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

Ans. Defining $f(0)=\pi^{2}$, here f is bounded and integrable in $[0,2 \pi]$. So the Fourier series for $f(x)$ is $\frac{1}{2} a_{0}+$ $\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$

Where $a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x=\frac{1}{\pi}\left[\int_{0}^{\pi}(x-\pi)^{2} d x+\int_{\pi}^{2 \pi} \pi^{2} d x\right]=\frac{1}{\pi}\left[\left[\frac{(x-\pi)^{3}}{3}\right]_{0}^{\pi}+\left[\pi^{2} x\right]_{\pi}^{2 \pi}\right]=\frac{4}{3} \pi^{2}$

$$
\begin{aligned}
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) & \cos n x d x=\frac{1}{\pi}\left[\int_{0}^{\pi}(x-\pi)^{2} \cos n x d x+\int_{\pi}^{2 \pi} \pi^{2} \cos n x d x\right] \\
& =\frac{1}{\pi}\left\{\left[\frac{1}{n}(x-\pi)^{2} \sin n x\right]_{0}^{\pi}\right. \\
& \left.-2 / n \int_{0}^{\pi}(x-\pi) \sin n x d x\right\}=-\frac{2}{n^{2} \pi}\left\{[-(x-\pi) \cos n x]_{0}^{\pi}+\int_{0}^{\pi} \cos n x d x\right\}=\frac{2}{n^{2}}
\end{aligned}
$$

$b_{n}=\frac{1}{\pi}\left\{\int_{0}^{\pi}(x-\pi)^{2} \sin n x d x+\int_{\pi}^{2 \pi}(\pi)^{2} \sin n x d x\right\}=\frac{1}{\pi}\left\{\left[-\frac{(x-\pi)^{2}}{n} \cos n x\right]_{0}^{\pi}+\frac{2}{n} \int_{0}^{\pi}(x-\right.$
$\left.\pi) \cos n x d x-\left.\frac{\pi^{2}(\cos n x)}{n}\right|_{\pi} ^{2 \pi}\right\}=\frac{1}{n \pi}\left\{(-1)^{n} \pi^{2}+\frac{2}{n^{2}}[\cos n x]_{0}^{\pi}\right\}=\frac{1}{\pi}\left[\frac{(-1)^{n} \pi^{2}}{n}-\frac{2}{n^{3}}\left(1-(-1)^{n}\right)\right]$. Hence the Fourier series of $f(x)$ in $[0,2 \pi]$ is $\frac{2}{3} \pi^{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2}} \cos n x+\frac{1}{\pi} \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} \pi^{2}}{n}-\frac{2}{n^{3}}\left(1-(-1)^{n}\right)\right] \sin n x$.

Here f is monotonically decreasing in [$0, \pi$] and monotonically increasing in $[\pi, 2 \pi]$ (constant function in $[\pi, 2 \pi])$. So f satisfies Dirichlet's conditions in $[0,2 \pi]$. At $x=0$, the Fourier series converges to $1 / 2$
$[f(0+0)+f(2 \pi-0)]$. Thus $\pi^{2}=\frac{2}{3} \pi^{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2}}$. That is $\frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

1.9.9. Find the Fourier cosine series for the function f defined for $0<=x<=\pi$ as $f(x)=$

$\left\{\begin{array}{l}\frac{\pi}{3}, 0 \leq x<\frac{\pi}{3} \\ 0, \frac{\pi}{3}<x<\frac{2 \pi}{3} \quad \text { and } f\left(\frac{\pi}{3}\right)=\frac{\pi}{12}, f\left(\frac{2 \pi}{3}\right)=-\frac{\pi}{12} . \text { Find the sum of the series for } \\ -\frac{\pi}{3}, \frac{2 \pi}{3}<x \leq \pi\end{array}\right.$
$x=\frac{\pi}{3}$ and deduce that $1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\frac{1}{13}-\frac{1}{17}+\cdots=\pi / 2 \sqrt{3}$.
Ans. Here f is bounded and integrable in $[0, \pi]$. So the Fourier cosine series for f is $\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x$.
Where $\mathrm{a}_{0}=\frac{2}{\pi} \int_{0}^{\pi} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\frac{2}{\pi}\left\{\int_{0}^{\frac{\pi}{3}} \frac{\pi}{3} \mathrm{dx}+\int_{\frac{2 \pi}{3}}^{\pi}\left(-\frac{\pi}{3}\right) \mathrm{dx}\right\}=\frac{2}{3}\left\{\frac{\pi}{3}-\frac{\pi}{3}\right\}=0$.
$a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x=\frac{2}{\pi}\left\{\frac{\pi}{3} \int_{0}^{\frac{\pi}{3}} \cos n x d x-\frac{\pi}{3} \int_{\frac{2 \pi}{3}}^{\pi} \cos n x d x\right\}=\frac{2}{3 n}\left\{[\sin n x]_{0}^{\frac{\pi}{3}}-[\sin n x]_{\frac{2 \pi}{3}}^{\pi}\right\}=$ $\frac{2}{3 n}\left(\sin \frac{n \pi}{3}+\sin \frac{2 n \pi}{3}\right)=\frac{4}{3 n} \sin \frac{n \pi}{2} \cos \frac{n \pi}{6}$, which is nonzero only when n is odd but not a multiple of 3 .

So the Fourier cosine series for the function $f(x)$ is $\frac{4}{3} \sum_{n=1}^{\infty} \frac{1}{n} \sin \frac{n \pi}{2} \cos \frac{n \pi}{6} \cos n x=\frac{2}{\sqrt{3}}\left[\frac{\cos x}{1}-\frac{\cos 5 x}{5}+\right.$ $\left.\frac{\cos 7 x}{7}-\frac{\cos 11 x}{11}+\cdots\right]$

Here f is bounded and monotonically decreasing in the interval $[0, \pi]$. Thus f satisfies Dirichlet's condition in $[0, \pi]$. Also f is continuous at 0 . So at $x=0$, the series converges to $f(0)$. Thus $\frac{\pi}{3}=$ $\frac{2}{\sqrt{3}}\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\cdots\right)$. This implies $\frac{\pi}{2 \sqrt{3}}=1-\frac{1}{5}+\frac{1}{7}-\frac{1}{11}+\cdots$
1.9.10. Prove that for $0 \leq x \leq \pi, x(\pi-x)=\frac{8}{\pi}\left(\frac{\sin x}{1^{3}}+\frac{\sin 3 x}{3^{3}}+\frac{\sin 5 x}{5^{3}}+\cdots\right)$.Hence deduce that $x=$ $\frac{\pi}{2}-\frac{4}{\pi}\left(\frac{\cos x}{1^{2}}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\frac{\cos 7 x}{7^{2}}+\cdots\right), 0 \leq x \leq \pi$.

Answer: Suppose $\mathrm{f}(\mathrm{x})=\mathrm{x}(\pi-\mathrm{x}), 0 \leq \mathrm{x} \leq \pi$.
Then the Fourier sine series of $f(x)$ in $[0, \pi]$ is $\sum_{n=1}^{\infty} b_{n} \sin n x$,
where $b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x=\frac{2}{\pi} \int_{0}^{\pi} x(\pi-x) \sin n x d x=\frac{2}{\pi}\left\{\left[-\frac{x(\pi-x)}{n} \cos n x\right]_{0}^{\pi}+\frac{1}{n} \int_{0}^{\pi}(\pi-\right.$ $2 x) \cos n x d x\}=\frac{2}{n^{2} \pi}\left\{[(\pi-2 x) \sin n x]_{0}^{\pi}+2 \int_{0}^{\pi} \sin n x d x\right\}=\frac{4}{n^{2} \pi}\left[-\frac{\cos n x}{n}\right]_{0}^{\pi}=\frac{4}{n^{3} \pi}\left[1-(-1)^{n}\right]$.

So the Fourier sine series of $f(x)$ is $\frac{8}{\pi}\left\{\frac{\sin x}{1^{3}}+\frac{\sin 3 x}{3^{3}}+\frac{\sin 5 x}{5^{3}}+\cdots\right\}$.
Here f is continuous in $[0, \pi]$, so it is bounded in $[0, \pi]$. Also f is monotonically increasing in $\left[0, \frac{\pi}{2}\right]$ and monotonically decreasing in $\left[\frac{\pi}{2}, \pi\right]$. So f satisfies Dirichlet's conditions in $[0, \pi]$.

Since f is continuous in $[0, \pi], x(\pi-x)=\frac{8}{\pi}\left(\frac{\sin x}{1^{3}}+\frac{\sin 3 x}{3^{3}}+\frac{\sin 5 x}{5^{3}}+\cdots\right), 0 \leq x \leq \pi$.
The last part will be proved later in Chapter SEQUENCE and SERIES of FUNCTIONS.
1.9.11. Find the Fourier series of the periodic function f with period 2π defind by $f(x)=$ $\{0,-\pi \leq x \leq 0$ $\left\{\mathbf{e}^{\mathbf{x}}, \mathbf{0}<x \leq \pi\right.$.

Ans. Here f is bounded and integrable in $[-\pi, \pi]$. So the Fourier series of $f(x)$ is $\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+\right.$ $\left.b_{n} \sin n x\right)$ where $a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{0}^{\pi} e^{x} d x=\frac{1}{\pi}\left(e^{\pi}-1\right), a_{n}=\frac{1}{\pi} \int_{0}^{\pi} e^{x} \cos n x d x=$ $\frac{1}{\pi}\left\{\left[e^{x} \cos n x\right]_{0}^{\pi}+n \int_{0}^{\pi} e^{x} \sin n x d x\right\}=\frac{1}{\pi}\left\{(-1)^{n} e^{\pi}-1-n^{2} \int_{0}^{\pi} e^{x} \cos n x d x\right\}$.
$\therefore \quad \mathrm{a}_{\mathrm{n}}=\frac{1}{\pi\left(1+\mathrm{n}^{2}\right)}\left\{(-1)^{\mathrm{n}} \mathrm{e}^{\pi}-1\right\}$.
$b_{n}=\frac{1}{\pi} \int_{0}^{\pi} e^{x} \sin n x d x=\frac{1}{\pi}\left\{\left[e^{x} \sin n x\right]_{0}^{\pi}-n \int_{0}^{\pi} e^{x} \cos n x d x\right\}=-\frac{n}{\pi}\left\{\left[e^{x} \cos n x\right]_{0}^{\pi}+\right.$ $\left.n \int_{0}^{\pi} e^{x} \sin n x d x\right\}=$

$$
-\frac{\mathrm{n}}{\pi}\left\{(-1)^{\mathrm{n}} \mathrm{e}^{\pi}-1+\mathrm{n} \mathrm{~b}_{\mathrm{n}}\right\}
$$

$\therefore \quad b_{n}=\frac{-n}{\pi\left(1+n^{2}\right)}\left\{(-1)^{n} e^{\pi}-1\right\}$. So the Fourier series of f in $[-\pi, \pi]$ is $f(x) \sim \frac{1}{2 \pi}\left(e^{\pi}-1\right)+$ $\sum_{n=1}^{\infty} \frac{1}{\pi\left(1+n^{2}\right)}\left\{(-1)^{n} e^{\pi}-1\right\} \cos n x+\sum_{n=1}^{\infty} \frac{-n}{\pi\left(1+n^{2}\right)}\left\{(-1)^{n} e^{\pi}-1\right\} \sin n x$.
1.9.12. Show that if $0<x<\pi, \quad \pi-x=\frac{\pi}{2}+\sum_{n=1}^{\infty}(\sin 2 n x) /$
n. Show that the equation does not hold for $x=0$ and $x=\pi$. Explain why it does not hold.
1.10 BESSEL's INEQUALITY: If $f:[-\pi, \pi] \rightarrow R$ be continuous except for a finite number of jump discontinuity and is periodic of period 2π then $\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+\right.$
$\left.b_{n}^{2}\right) \leq \frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x$, where a_{n} and b_{n}^{\prime} sare Fourier coefficients.
Corollary: If f satisfies the stated conditions, then $\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$ is convergent.
1.11 PARSEVAL'S IDENTITY: If $\mathbf{a}_{\mathbf{n}}, \mathbf{b}_{\mathbf{n}}^{\prime}$ sare Forier coefficients of \mathbf{f} in $[-\pi, \pi]$, then $\frac{a_{0}^{2}}{2}+$ $\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x$.
1.12.1 Examples: The series $\sum_{\mathrm{n}=1}^{\infty} \sin \mathrm{nx}, \quad \sum_{\mathrm{n}=1}^{\infty} \frac{\sin \mathrm{nx}}{\sqrt{\mathrm{n}}}$ are not Fourier series of Riemann integrable function in $[-\pi, \pi]$ as $\sum_{n \in N} b_{n}^{2}$ is divergent.
1.12.2 Example: Examine whether the trigonometric series $\sum_{n=1}^{\infty} \frac{\operatorname{sinnx}}{n^{2}}$ is a Fourier series in $[-\pi, \pi]$.

Answer: Here $a_{n}=0$ and $b_{n}=\frac{1}{n^{2}}$. Since the series $\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)=\sum \frac{1}{n^{4}}$ is a convergent series so the given series is a Fourier series of some Riemann integrable function in $[-\pi, \pi]$

