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Introduction:  In 1807, Fourier astounded some of his contemporaries by asserting that an “arbitrary” 

function could be expressed as a linear combination of sines and cosines. These linear combinations, 

now called Fourier series, have become an indispensable tool in the analysis of certain periodical 

phenomena(such as vibrations, and planetary and wave motion)which are studied in Physics and 

Engineering. 

1.1 DEFINATION: A trigonometric series is of the form    
1

2
a0 + ∑ (an cos nx + bn sin nx)

∞
n=1   where the 

co-efficients  a0, an, bn are constants. 

It can be shown that every periodic function of x satisfying certain very general conditions can be 

represented in the above form. 

1.2 DEFINATION: Let f ∶ [−π, π] → R be a bounded function and P = {−π = t0 < t1 < ⋯ < tn = π} be a 

partition of [−π, π]. For any points xi  ∈ [ti−1, ti]  (i = 1,2, …n)                  S(P, f) =  ∑ f(xi)(ti −
i=n
i=1

ti−1)   is called Riemann sum of the function f. If lim
||P||→0

S(P, f)  is finite then f is said to be Riemann 

integrable on [−π, π] and the finite limit is denoted by ∫ f
π

−π
.  We call f is integrable on [−π,π] when it is 

Riemann integrable on [−π, π]. 

1.3 DEFINATION: Let f ∶ [−π, π] → R be unbounded in [−π, π] and there are finite number of points 

−π = t0 < t1 < ⋯ < tn = π such that f is bounded and integrable in every closed sub interval 

contained in each open interval (ti−1, ti). If lim
δi→0

∫ |f|
ti− δi
ti−1+δi

 exists finitely for each i  then f is said to be 

absolutely convergent in [−π, π]. 

1.4 DEFINATION: Let f ∶ [−π, π] → R be an integrable function on [−π,π] or if unbounded on [−π, π] let 

the improper integral ∫ f(x)dx
π

−π
 be absolutely convergent.Then the trigonometric series  

1

2
a0 +

∑ (an cos nx + bn sinnx)
∞
n=1  is called the Fourier series in [−π, π] corresponding to the function f, 

where  a0 , an, bn, called Fourier co-efficients, are given by  a0 =
1

π
∫ f(x)dx
π

−π
  , an =

1

π
∫ f(x) cos nxdx
π

−π
 , bn =

1

π
∫ f(x) sin nxdx
π

−π
  n ∈ N . 

1.5 THEOREM: Suppose f ∶ [−π, π] → R be an integrable function on [−π, π] or if unbounded on [−π,π] 

let the improper integral ∫ f(x)dx
π

−π
 be absolutely convergent. For n ∈ N let  Sn(x) =

a0

2
+

 ∑ (ak cos kx + bk sin kx) 
n
k=1 be the n th partial sum of the Fourier series and Tn(x) =

c0

2
+
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 ∑ (ck cos kx + dk sinkx) 
n
k=0  be the n th partial sum of any trigonometric series. Then ∫ (f − Sn)

2π

−π
≤

∫ (f − Tn)
2π

−π
. Equality holds if and only if  ak = ck and bk = dk for all k. 

(That is to say among all functions Tn,   Sn will give the best possible mean square approximation to f.)  

1.6 Worked out examples:  

1.6.1 Find the Fourier series of 𝐟(𝐱) =  𝐱, 𝐱 ∈ [−𝛑, 𝛑]  

Ans: Since f is continuous on [−π, π] it is bounded and integrable on [−π, π]. Then the Fourier series of f 

in [−π, π] is         
1

2
a0 + ∑ (an cos nx + bn sin nx)

∞
n=1    

Where  a0 =
1

π
∫ f(x)dx
π

−π
= 0(since f is odd)  

an =
1

π
∫ f(x) cos nxdx

π

−π

= 0(since f is odd) 

bn =
1

π
∫ f(x) sin nxdx

π

−π

=
2

π
∫ x sinnx dx =

2

π
{[−

x

n
cos nx]

0

π

+
1

n
∫ cos nx dx 

π

0

} =  −
2

n
cos nπ 

π

0

= {
−
2

n
  if n is even 

2

n
  if n is odd

  

Hence the Fourier series for f in  [−π, π] is  2[
sin x

1
−
sin 2x

2
+
sin3x

3
−⋯ . ]. 

1.7 Dirichlet’s conditions : A real valued function f in [a, b] is said to satisfy Dirichlet’s condition if either  

1) f is bounded in [a, b] and piecewise monotone in [a, b] i.e. the interval can be broken up into a finite 

number of open subintervals in each of which f is monotonic, 

Or,2) f has finite number of points of infinite discontinuity in [a, b],but when arbitrary small 

neighbourhoods of these points of discontinuity are excluded, f(x) is bounded in the remainder of the 

interval and in each remaining interval f is piecewise monotone and ∫ f(x)dx
b

a
 is absolutely convergent. 

1.8 THEOREM: If f is a periodic function of period 2π andsatisfies Dirichlet’s conditions in  [−π, π] , then 

at x= c the Fourier series    
1

2
a0 +∑ (an cos nx + bn sin nx)

∞
n=1   converges to 

1

2
{f(c − 0) + f(c + 0)} for 

– π < 𝑐 < 𝜋;      and to 
1

2
{f(π − 0) +  f(−π + 0)} for c = ±π. 

1.9 Worked out examples: 
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1.9.1. Obtain the Fourier series expansion of the function f(x) = 𝐱 𝐬𝐢𝐧𝐱 on [−𝛑, 𝛑]. Hence deduce that 
𝛑

𝟒
=

𝟏

𝟐
+

𝟏

𝟏.𝟑
−

𝟏

𝟑.𝟓
+

𝟏

𝟓.𝟕
−⋯ 

Ans. Here f is bounded and integrable in  [−π,π]. So the Fourier series expansion for f(x) is                 
1

2
a0 +∑ (an cos nx + bn sinnx)

∞
n=1       where  a0 =

1

π
∫ f(x)dx
π

−π
=

2

π
∫ x sin x dx =

2

π
{[−x cos x]0

π +
π

0

 ∫ cos x dx
π

0
} =

2

π
. π = 2;          

   for n ∈ N, an =
1

π
∫ f(x) cos nxdx
π

−π
=

2

π
 ∫ x sin x cos nx dx =

1

π
∫ x(sin(n + 1)x − sin(n −
π

0

π

0

1) x)dx =

{

1

π
{[−

xcos 2x

2
]
0

π
+
1

2
∫ cos 2x dx
π

0
} = −

1

2
 if n = 1

1

π
{[
x(.cos(n−1)x)

n−1 
–  x.

cos(n+1)x

n+1
]
0

π

+ ∫ [
cos(n+1)x

n+1
  −

cos(n−1)x

n−1
   ]

π

0
dx} = (−1)n−1 [

1

n−1
−

1

n+1
] =

(−1)n−12

n2−1
 if n ≠ 1

   

For n ∈ N, bn =
1

π
∫ f(x) sinnx dx
π

−π
 = 0(Sincef(x) sinnx is an odd function). 

Hence the Fourier series corresponding to f in [−π,π] is  

f(x) ~ 1 −
1

2
cosx + 2∑

(−1)n−1

n2−1
cos nx .∞

n=2   

Here f is an even function, so f ‘ is an odd function. Hence f ‘ is symmetric about origin. 

Now f ′(x) = sin x + x cos x > 0 𝑖𝑛 (0,
π

2
)and < 0 𝑖𝑛 (

π

2
, π). Hence f is piecewise monotone 

in [−π, π].So f satisfies Dirichlet’s conditions in  [−π, π]. Since f is continuous at 
π

2
 ,  

f (
π

2
) =  1 −

1

2
cos (

π

2
) + 2∑

(−1)n−1

n2 − 1
cos n (

π

2
) .

∞

n=2

 

∴
π

2
= 1 +

2

22−1
−

2

42−1
+

2

62−1
−⋯  

This implies 
π

4
=

1

2
+

1

1.3
−

1

3.5
+

1

5.7
−⋯  

  1.9.2. Find the Fourier series of f where 𝐟(𝐱) = {
𝐱 − 𝛑    𝐢𝐟 − 𝛑 < 𝑥 < 0
𝛑 − 𝐱      𝐢𝐟 𝟎 ≤ 𝐱 ≤ 𝛑

  

Ans. Here f is bounded and integrable in [−π,π]. So the Fourier series for f(x) is  

1

2
a0 +∑ (an cos nx + bn sinnx)

∞
n=1       where  a0 =

1

π
∫ f(x)dx
π

−π
= 

1

π
[∫ (x −  π)dx +
0

−π ∫ (π − x)dx
π

0
] 

1

π
{[
x2

2
− πx]−π

0 + [πx −
x2

2
]0
π }  =

1

π
(−

3π2

2
+
π2

2
) = −π 
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for n ∈ N, an =
1

π
∫ f(x) cos nx dx
π

−π
=

1

π
[∫ (x −  π) cos nx dx +
0

−π ∫ (π − x) cos nxdx
π

0
] = 

1

π
{[
x−π

n
sin nx]

−π

0
+ [

π−x

n
sin nx]0

π −
1

n
[∫ sin nxdx −
0

−π ∫ sinnx dx]}  =
1

n2π
{[cos nx]−π

0 − [cos nx]0
π} =

π

0

1

n2π
{1 − (−1)n − (−1)n + 1} =

2

n2π
(1 − (−1)n). 

For n ∈ N, bn =
1

π
∫ f(x) sinnx dx
π

−π
=

1

π
[∫ (x −  π) sin nxdx +
0

−π ∫ (π − x) sinnx dx
π

0
] = 

1

π
 {[−

x−π

n
cos nx]

−π

0
− [

π−x

n
cos nx]0

π +
1

n
[∫ cos nx dx − ∫ cos nx dx

π

0

0

−π
} =

2

n
(1 − (−1)n) 

So the Fourier series of f(x) is f(x) ~ −
𝜋

2
+

4

𝜋
(
cos𝑥

12
+
cos3𝑥

32
+ … ) +  4 (

sin𝑥

1
+
sin3𝑥

3
+⋯) 

1.9.3 Obtain the Fourier series expansion of f(x) in  [−𝝅,𝝅] where  

f(x) = {
𝟎         − 𝝅 ≤ 𝒙 < 0
𝟏

𝟒
𝝅𝒙     𝟎 ≤ 𝒙 ≤ 𝝅

.  Hence show that 𝟏 +
𝟐

𝟑𝟐
+

𝟐

𝟓𝟐
+⋯       =

𝝅𝟐

𝟖
 

Ans. Hints. 𝑎0 =
𝜋2

8
,    𝑎𝑛 =

1

4𝑛2
((−1)𝑛 − 1), 𝑏𝑛 = −

𝜋

4𝑛
(−1)𝑛  

The Fourier series expansion of f(x) in  [−𝜋, 𝜋] is 
𝜋2

16
−
1

2
[
cos𝑥

12
+
cos 3𝑥

32
+
cos 5𝑥

52
+⋯ ] +

𝜋

4
[
sin𝑥

1
−
sin 2𝑥

2
+

sin 3𝑥

3
−⋯].The function f is bounded and monotonic in  [−𝜋, 𝜋].So f satisfies Dirichlet’s conditions in  

[−𝜋, 𝜋]. Also f is continuous at 0. So f(0) =
𝜋2

16
−
1

2
[
1

12
+

1

32
+

1

52
+⋯] 

1.9.4. Find the Fourier series expansion of periodic function f(x) with period 𝟐𝛑 defined by  

𝐟(𝐱) = {
𝟎, −𝛑 < 𝑥 < 𝑎𝜋
𝟏,               𝐚 ≤ 𝐱 ≤ 𝐛
𝟎,             𝐛 < 𝑥 < 𝜋

. Find the sum of the series for 𝐱 = 𝟒𝛑 + 𝐚 and deduce that 

∑
𝐬𝐢𝐧 𝐧(𝐛−𝐚)

𝐧
 =   

𝛑−𝐛+𝐚

𝟐
∞
𝐧=𝟏 . 

Ans. Hints. Define f at  x = π and at  x = −π as f(−π) = 0 = f(π) 

The function f is bounded and integrable in  [−π,π]. The Fourier series of f(x) is  
1

2
a0 +

∑ (an cos nx + bn sinnx)
∞
n=1       where  a0 =

1

π
∫ f(x)dx
π

−π
=

1

π
(b − a),    an =

1

nπ
[sinnb − sinna], bn =

1

nπ
[cos na − cos nb ]. The Fourier series of f(x) is 

1

2π
(b − a) +

1

π
∑ (

1

n
[(sin nb − sin na) cos nx + (cos na − cos nb) sin nx]).

.
∞
n=1  

Here f is piecewise monotone and bounded in [–π, π]. . So f satisfies Dirichlet ′s conditions in [–π, π] 

Since f is periodic function of period 2π, so f(4π + a) = f(a). Now the Fourier series for f(x) converges at 

x = 4π + a to
1

2
[f(a + 0) + f(a − 0)] =

1

2
  That is the sum of the series at x = 4π + a is

1

2
 



5 
 

At x=b, the Fourier series converges to 
1

2
[f(b + 0) + f(b − 0)] =

1

2
. Hence 

1

2
=

b−a

2π
+

1

π
∑

sinn(b−a)

n
 .  So ∞

n=1 ∑
sin n(b−a)

n
 =

π−b+a

2
.  ∞

n=1  

1.9.5  Let 𝐟: [−𝛑, 𝛑] → 𝐑 be defined as follows: 𝐟(𝐱) = {
−𝐜𝐨𝐬 𝐱, −𝛑 ≤ 𝐱 < 0 
𝐜𝐨𝐬 𝐱,       𝟎 ≤ 𝐱 ≤ 𝛑

. Obtain the Fourier 

series for the function f(x). Hence find the sum of the series 
𝟐

𝟏.𝟑
−

𝟔

𝟓.𝟕
+

𝟏𝟎

𝟗.𝟏𝟏
−⋯ 

Ans. Hints. a0 = 0, an = 0, bn =
1

π
4n

n2−1
if n is even bn = 0 if nis odd.At x =

π

4
 the sum of the series is

π

4√2 
  

1.9.6. Show that the even function 𝐟(𝐱) =

|𝐱| 𝐡𝐚𝐬 𝐚 𝐅𝐨𝐮𝐫𝐢𝐞𝐫 𝐜𝐨𝐬𝐢𝐧𝐞 𝐬𝐞𝐫𝐢𝐞𝐬 𝐢𝐧 [–𝛑, 𝛑] 𝐨𝐟 𝐭𝐡𝐞 𝐟𝐨𝐫𝐦
𝛑

𝟐
−

𝟒

𝛑
{
𝐜𝐨𝐬 𝐱

𝟏𝟐
+
𝐜𝐨𝐬 𝟑𝐱

𝟑𝟐
+
𝐜𝐨𝐬 𝟓𝐱

𝟓𝟐
+⋯}.Hence 

show that 
𝟏

𝟏𝟐
+

𝟏

𝟑𝟐
+

𝟏

𝟓𝟐
+⋯ =

𝛑𝟐

𝟖
. 

1.9.7. Prove that the odd function (𝐱) = 𝐞𝐱 − 𝐞−𝐱, 𝐱 ∈

 [– 𝛑, 𝛑]  𝐡𝐚𝐬 𝐚 𝐅𝐨𝐮𝐫𝐢𝐞𝐫 𝐬𝐢𝐧𝐞 𝐬𝐞𝐫𝐢𝐞𝐬 𝐨𝐟 𝐭𝐡𝐞 𝐟𝐨𝐫𝐦 
𝟒(𝐬𝐢𝐧𝐡𝛑)

𝛑
[
𝐬𝐢𝐧 𝐱

𝟏𝟐+𝟏
−
𝟐(𝐬𝐢𝐧 𝟐𝐱)

𝟐𝟐+𝟏
+⋯]. Hence show that 

𝟏

𝟏𝟐+𝟏
−

𝟑

𝟑𝟐+𝟏
+

𝟓

𝟓𝟐+𝟏
+⋯ = 𝛑/(𝟒 𝐜𝐨𝐬𝐡

𝛑

𝟐
 )    

Fourier sine and cosine series: 

If f is a real valued function on [𝟎, 𝝅] which is bounded and integrable then the series of the form 

∑ 𝒃𝒏 𝒔𝒊𝒏𝒏𝒙 𝒊𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒂 𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝒔𝒊𝒏𝒆 𝒔𝒆𝒓𝒊𝒆𝒓𝒔, 𝒊𝒇 𝒃𝒏 =
𝟐

𝝅
∫ 𝒇(𝒙) 𝒔𝒊𝒏 𝒏𝒙 𝒅𝒙 .
𝝅

𝟎
∞
𝒏=𝟏  And the series of 

the form  
𝒂𝟎

𝟐
+∑ 𝒂𝒏 𝒄𝒐𝒔𝒏𝒙 𝒊𝒔 𝒄𝒂𝒍𝒍𝒆𝒅 𝒂 𝑭𝒐𝒖𝒓𝒊𝒆𝒓 𝒄𝒐𝒔𝒊𝒏𝒆 𝒔𝒆𝒓𝒊𝒆𝒓𝒔, 𝒊𝒇 𝒂𝒏 =

𝟐

𝝅
∫ 𝒇(𝒙) 𝒄𝒐𝒔𝒏𝒙 𝒅𝒙 .
𝝅

𝟎
∞
𝒏=𝟏  

1.9.8. The function f is defined for 𝟎 < 𝑥 < 2𝜋 as  f(x) ={
(𝐱 − 𝛑)𝟐  𝐰𝐡𝐞𝐧 𝟎 < 𝑥 < 𝜋,

𝛑𝟐,                𝐰𝐡𝐞𝐧 𝛑 ≤ 𝐱 ≤ 𝟐𝛑.
 Hence deduce 

the value of ∑
𝟏

𝐧𝟐
∞
𝐧=𝟏 .  

Ans. Defining f(0)= π2, here f is bounded and integrable in  [0,2π]. So the Fourier series for f(x) is 
1

2
a0 +

∑ (an cos nx + bn sinnx)
∞
n=1  

Where  a0 =
1

π
∫ f(x)dx
2π

0
=

1

π
[∫ (x − π)2dx +
π

0 ∫ π2dx
2π

π
] =

1

π
[[
(x−π)3

3
]
0

π

+ [π2x]π
2π] =

4

3
π2 

an =
1

π
∫ f(x) cos nx dx =

1

π
[∫ (x − π)2 cos nx dx +

π

0

∫ π2 cos nx dx
2π

π

]
2π

0

=
1

π
{[
1

n
(x − π)2 sinnx]

0

π

− 2/n∫ (x − π) sin nx dx} = −
2

n2π
{[−(x − π) cos nx]0

π +∫ cos nx dx
π

0

} =
2

n2

π

0
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bn =
1

π
{∫ (x − π)2 sin nx dx + ∫ (π)2 sin nx dx} =    

2π

π
 

π

0
   
1

π
{[−

(x−π)2

n
cos nx]

0

π

+
2

n
∫ (x −
π

0

π) cos nx dx −
π2(cosnx)

n
|π
2π} =

1

nπ
{(−1)nπ2 +

2

n2
[cos nx]0

π} =
1

π
[
(−1)nπ2

n
−

2

n3
(1 − (−1)n)]. Hence the 

Fourier series of f(x) in [0, 2π] is 
2

3
π2+∑

2

n2
cos nx +

1

π
∞
n=1 ∑ [

(−1)nπ2

n
−

2

n3
(1 − (−1)n)] sinnx.∞

n=1  

Here f is monotonically decreasing in [0, π] and monotonically increasing in [π, 2π](constant function in 

[π, 2π]). So f satisfies Dirichlet’s conditions in [0, 2 π]. At x= 0, the Fourier series converges to ½ 

[f(0+0)+f(2 π − 0)]. Thus π2 =
2

3
π2 +∑

2

n2
∞
n=1  . That is 

π2

6
= ∑

1

n2
∞
n=1 . 

1.9.9. Find the Fourier cosine series for the function f defined for 0<= x<= 𝛑 𝐚𝐬 𝐟(𝐱) =

{
 
 

 
 

𝛑

𝟑
, 𝟎 ≤ 𝐱 <

𝛑

𝟑

𝟎,
𝛑

𝟑
< 𝑥 <

𝟐𝛑

𝟑

−
𝛑

𝟑
,
𝟐𝛑

𝟑
< 𝑥 ≤ 𝜋

 𝐚𝐧𝐝 𝐟 (
𝛑

𝟑
) =

𝛑

𝟏𝟐
, 𝐟 (

𝟐𝛑

𝟑
) = −

𝛑

𝟏𝟐
.  Find the sum of the series for 

x=
𝛑

𝟑
 𝐚𝐧𝐝 𝐝𝐞𝐝𝐮𝐜𝐞 𝐭𝐡𝐚𝐭 𝟏 −

𝟏

𝟓
+
𝟏

𝟕
−

𝟏

𝟏𝟏
+

𝟏

𝟏𝟑
−

𝟏

𝟏𝟕
+⋯ = 𝛑/𝟐√𝟑. 

Ans. Here f is bounded and integrable in [0, π]. So the Fourier cosine series  for f is   
a0

2
+ ∑ an cos nx

∞
n=1 . 

Where a0 =
2

π
∫ f(x)dx =

2

π
{∫

π

3
dx +

π

3
0 ∫ (−

π

3
) dx

π
2π

3

} =
2

3
{
π

3
−
π

3
} = 0.

π

0
 

an =
2

π
∫ f(x) cos nx dx
π

0
=

2

π
{
π

3
∫ cos nx dx
π

3
0

−
π

3
∫ cos nx dx
π
2π

3

} =
2

3n
{[sinnx]0

π

3 − [sin nx]2π
3

π } =

2

3n
(sin

nπ

3
+ sin

2nπ

3
) =

4

3n
sin

nπ

2
cos

nπ

6
, which is nonzero only when n is odd but not a multiple of 3. 

 

So the Fourier cosine series for the function f(x) is 
4

3
∑

1

n
sin

nπ

2
cos

nπ

6
cos nx =

2

√3  
[
cosx

1
−
cos 5x

5
+∞

n=1

cos 7x

7
−
cos11x

11
+⋯]  

Here f is bounded and monotonically decreasing in the interval [0, π]. Thus f satisfies Dirichlet’s 

condition in [0, π]. Also f is continuous at 0. So at x=0,  the series converges to f(0). Thus 
π

3
=

2

√3
(
1

1
−
1

5
+
1

7
−

1

11
+⋯) . This implies

π

2√3
= 1−

1

5
+
1

7
−

1

11
+⋯ 

1.9.10. Prove that for 𝟎 ≤ 𝐱 ≤ 𝛑, 𝐱(𝛑 − 𝐱) =
𝟖

𝛑
(
𝐬𝐢𝐧𝐱

𝟏𝟑
+
𝐬𝐢𝐧 𝟑𝐱

𝟑𝟑
+
𝐬𝐢𝐧 𝟓𝐱

𝟓𝟑
+⋯) .𝐇𝐞𝐧𝐜𝐞 𝐝𝐞𝐝𝐮𝐜𝐞 𝐭𝐡𝐚𝐭 𝐱 =

𝛑

𝟐
−
𝟒

𝛑
(
𝐜𝐨𝐬 𝐱

𝟏𝟐
+
𝐜𝐨𝐬 𝟑𝐱

𝟑𝟐
+
𝐜𝐨𝐬 𝟓𝐱

𝟓𝟐
+
𝐜𝐨𝐬 𝟕𝐱

𝟕𝟐
+⋯) , 𝟎 ≤ 𝐱 ≤ 𝛑. 

Answer: Suppose f(x) = x(π − x), 0 ≤ x ≤ π. 

Then the Fourier sine series of f(x) in [0, π] is ∑ bn sinnx
∞
n=1 , 
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where bn =
2

π
∫ f(x) sin nx dx =

2

π
∫ x(π − x) sinnx dx =

2

π
{[−

x(π−x)

n
cos nx]

0

π

+
1

n
∫ (π −
π

0

π

0

π

0

2x) cos nx dx} =
2

n2π
{[(π − 2x) sin nx]0

π +  2∫ sin nx dx
π

0
} =

4

n2π
[−

cos nx

n
]
0

π
=

4

n3π
[1 − (−1)n].  

So the Fourier sine series of f(x) is 
8

π
{
sin x

13
+
sin3x

33
+
sin 5x

53
+⋯ }. 

Here f is continuous in [0, π], so it is bounded in [0, π]. Also f is monotonically  increasing in[0,
π

2
]  and 

monotonically decreasing in [
π

2
, π]. So f satisfies Dirichlet’s conditions in [0, π]. 

Since f is continuous in [0, π], x(π − x) =
8

π
(
sinx

13
+
sin 3x

33
+
sin 5x

53
+⋯) , 0 ≤ x ≤ π. 

The last part will be proved later in Chapter SEQUENCE and SERIES of FUNCTIONS. 

1.9.11. Find the Fourier series of the periodic function f with period 𝟐𝛑 𝐝𝐞𝐟𝐢𝐧𝐝 𝐛𝐲 𝐟(𝐱) =

{
𝟎, −𝛑 ≤ 𝐱 ≤ 𝟎
𝐞𝐱, 𝟎 < 𝑥 ≤ 𝜋

.  

Ans. Here f is bounded and integrable in [−π, π]. So the Fourier series of f(x)is
a0

2
+∑ (an cos nx +

∞
n=1

bn sinnx) where a0 =
1

π
∫ f(x)
π

−π
dx =

1

π
∫ exdx =

1

π
(eπ − 1)

π

0
, an =

1

π
∫ ex cos nx dx =
π

0
 

1

π
{[ex cos nx]0

π + n∫ ex sin nx dx
π

0
} =  

1

π
{(−1)neπ − 1− n2 ∫ ex cos nx dx

π

0
}. 

∴   an =
1

π(1+n2)
{(−1)neπ − 1}. 

bn =
1

π
∫ ex sin nx dx =
π

0
 
1

π
{[ex sinnx]0

π −  n∫ ex cos nx dx
π

0
} = −

n

π
{[ex cos nx]0

π  +

n∫ ex sin nx dx 
π

0
} =  

−
n

π
{(−1)neπ − 1 + n bn}. 

∴   bn =
−n

π(1+n2)
{(−1)neπ − 1}. So the Fourier series of f in [−π, π] is f(x)  ~

1

2π
(eπ − 1) +

 ∑
1

π(1+n2)
{(−1)neπ − 1} cos nx + ∑

−n

π(1+n2)
{(−1)neπ − 1} sin nx.∞

n=1
∞
n=1  

1.9.12. Show that if  0<x<𝛑,    𝛑 − 𝐱 =
𝛑

𝟐
+ ∑  (𝐬𝐢𝐧𝟐𝐧𝐱)/∞

𝐧=𝟏

𝐧  . 𝐒𝐡𝐨𝐰 𝐭𝐡𝐚𝐭 𝐭𝐡𝐞 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝐝𝐨𝐞𝐬 𝐧𝐨𝐭 𝐡𝐨𝐥𝐝 𝐟𝐨𝐫 𝐱 = 𝟎 𝐚𝐧𝐝 𝐱 =  𝛑. 𝐄𝐱𝐩𝐥𝐚𝐢𝐧 𝐰𝐡𝐲 𝐢𝐭 𝐝𝐨𝐞𝐬 𝐧𝐨𝐭 𝐡𝐨𝐥𝐝.  

1.10 BESSEL’s INEQUALITY: If f : [−𝛑, 𝛑] → 𝐑 be continuous except for a finite number of jump 

discontinuity and is periodic of period 𝟐𝛑 then 
𝐚𝟎
𝟐

𝟐
+ ∑ (𝐚𝐧

𝟐 +∞
𝐧=𝟏

𝐛𝐧
𝟐) ≤

𝟏

𝛑
∫ 𝐟𝟐(𝐱)𝐝𝐱,𝐰𝐡𝐞𝐫𝐞 𝐚𝐧 𝐚𝐧𝐝 𝐛𝐧

′ 𝐬𝐚𝐫𝐞 𝐅𝐨𝐮𝐫𝐢𝐞𝐫 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭𝐬.
𝛑

−𝛑
  

Corollary: If f satisfies the stated conditions, then 
𝐚𝟎
𝟐

𝟐
+ ∑ (𝐚𝐧

𝟐 + 𝐛𝐧
𝟐)∞

𝐧=𝟏  is convergent. 
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1.11 PARSEVAL’S IDENTITY: If 𝐚𝐧, 𝐛𝐧
′ 𝐬𝐚𝐫𝐞 𝐅𝐨𝐫𝐢𝐞𝐫 𝐜𝐨𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐭𝐬 𝐨𝐟 𝐟 𝐢𝐧 [−𝛑, 𝛑], 𝐭𝐡𝐞𝐧 

𝐚𝟎
𝟐

𝟐
+

∑ (𝐚𝐧
𝟐 + 𝐛𝐧

𝟐) =
𝟏

𝛑
∫ 𝐟𝟐(𝐱)𝐝𝐱.
𝛑

−𝛑
∞
𝐧=𝟏  

1.12.1 Examples :  The series ∑ sinnx,   ∞
n=1 ∑

sinnx

√n  
∞
n=1   are not Fourier series of Riemann integrable 

function in [−π, π] as ∑ bn
2

n∈N   is divergent.  

1.12.2 Example: Examine whether the trigonometric series ∑
𝐬𝐢𝐧𝐧𝐱

𝐧𝟐
∞
𝐧=𝟏   is a Fourier series in  [– 𝛑, 𝛑]. 

Answer: Here an = 0 and bn =
1

n2
. Since the series ∑ (an

2 + bn
2) =  ∑

1

n4
 is a convergent ∞

n=1  series so 

the given series is a Fourier series of some Riemann integrable function in [– π, π] 

 

 


