Semester 1 (CC2): Chemical Kinetics

Consecutive Reactions or Sequential Reactions:

Dr. Biswajit Pal
Department of Chemistry,
St. Paul's C. M. College, Kolkata, India

Consecutive Reactions or Sequential Reactions:

The simplest consecutive is one which involves only one intermediate step. Let us consider the following consecutive reaction.

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

Let $[\mathrm{A}]_{0}$ be the initial concentration of A and $[\mathrm{A}],[\mathrm{B}],[\mathrm{C}]$ be the concentrations of A, B and C respectively at time t . Therefore, at any time, $[\mathrm{A}]_{0}=[\mathrm{A}]+[\mathrm{B}]+[\mathrm{C}]$

Since the conversion of A to B is a first order process, the rate of disappearance of A ,

$$
\begin{equation*}
-\frac{d[A]}{d t}=k_{1}[A] \tag{2}
\end{equation*}
$$

Consecutive Reactions or Sequential Reactions:

Hence, on integrating eqn (2), we get

$$
\begin{equation*}
[A]=[A]_{0} e^{-k_{1} t} \tag{3}
\end{equation*}
$$

Now, the rate of accumulation of $B=$ the rate formation of $B-$ the rate of decomposition of B into C .

Thus,

$$
\begin{equation*}
\frac{d[B]}{d t}=k_{1}[A]-k_{2}[B] \tag{4}
\end{equation*}
$$

Substituting [A] from eqn (3) into eqn (4), we get,

Or,

$$
\begin{equation*}
\frac{d[B]}{d t}=k_{1}[A]_{0} e^{-k_{1} t}-k_{2}[B] \tag{5}
\end{equation*}
$$

Consecutive Reactions or Sequential Reactions:

On rearranging the eqn (5) becomes,

$$
\begin{equation*}
\frac{d[B]}{d t}+k_{2}[B]=k_{1}[A]_{0} e^{-k_{1} t} \tag{6}
\end{equation*}
$$

Multiplying both the sides of the eqn (6) by $\mathrm{e}^{k 2 \mathrm{t}}$,

$$
\begin{equation*}
e^{k_{2} t} \frac{d[B]}{d t}+e^{k_{2} t} k_{2}[B]=k_{1}[A]_{0} e^{\left(k_{2}-k_{1}\right) t} \tag{7}
\end{equation*}
$$

On integrating eqn (7), we get

$$
[B] e^{k_{2} t}=\frac{k_{1}}{\left(k_{2}-k_{1}\right)}[A]_{0} e^{\left(k_{2}-k_{1}\right) t}+Z, \text { where } Z=\text { constant }
$$

Consecutive Reactions or Sequential Reactions:

When, $\mathrm{t}=0,[\mathrm{~B}]=0, \quad Z=-\frac{k_{1}}{\left(k_{2}-k_{1}\right)}[A]_{0}$

$$
\begin{align*}
& \therefore[B] e^{k_{2} t}=\frac{k_{1}[A]_{0}}{\left(k_{2}-k_{1}\right)}\left[e^{\left(k_{2}-k_{1}\right) t}-1\right] \\
& \text { Or, } \quad[B]=[A]_{0}\left(\frac{k_{1}}{k_{2}-k_{1}}\right)\left[e^{-k_{1} t}-e^{-k_{2} t}\right] \tag{8}
\end{align*}
$$

Substituting eqn (3) and (8) in eqn (1), we get

$$
\begin{equation*}
[A]_{0}=[A]_{0} e^{-k_{1} t}+[A]_{0}\left(\frac{k_{1}}{k_{2}-k_{1}}\right)\left[e^{-k_{1} t}-e^{-k_{2} t}\right]+[C] \tag{9}
\end{equation*}
$$

Consecutive Reactions or Sequential Reactions:

Or,

$$
\begin{equation*}
[C]=[A]_{0}-[A]_{0} e^{-k_{1} t}-[A]_{0}\left(\frac{k_{1}}{k_{2}-k_{1}}\right)\left[e^{-k_{1} t}-e^{-k_{2} t}\right] \tag{10}
\end{equation*}
$$

Or,

$$
\begin{equation*}
[C]=[A]_{0}\left\{1-e^{-k_{1} t}-\frac{k_{1}}{\left(k_{2}-k_{1}\right)}\left[e^{-k_{1} t}-e^{-k_{2} t}\right]\right\} \tag{11}
\end{equation*}
$$

Or,

$$
\begin{equation*}
[C]=[A]_{0}\left\{1-\frac{1}{\left(k_{2}-k_{1}\right)}\left[k_{2} e^{-k_{1} t}-k_{1} e^{-k_{2} t}\right]\right\} \tag{12}
\end{equation*}
$$

Consecutive Reactions or Sequential Reactions:

Suppose in the above consecutive reactions the rate constant k_{2} is greater than k_{1} i.e., $k_{2} \gg k_{1}$. So in the above equation, $\mathrm{e}^{-k 1 t} \gg \mathrm{e}^{-k 2 t}$ and hence $k_{1} \mathrm{e}^{-k 2 t}$ may be ignored in comparison to $k_{2} \mathrm{e}^{-k 1 t}$ and $\left(k_{2}-k_{1}\right) \approx k_{2}$.

Thus, the equation (12) simplifies to

$$
\begin{equation*}
[C] \simeq[A]_{0}\left\{1-e^{-k_{1} t}\right\} \tag{13}
\end{equation*}
$$

