B MECHANICS OF A PARTICLE

Let r be the radius vector of a particle from some given origin and v its vector
velocity:

_ar
T dt’

The linear momentum p of the particle is defined as the product of the particle
mass and its velocity:

£1.1j

¥

p = mv. (1.2)

In consequence of interactions with external objects and fields, the particle may
experience forces of various types, e.g., gravitational or electrodynamic; the vec-
tor sum of these forces exerted on the particle is the total force F. The mechanics
of the particle is contained in Newton’s second law of motion, which states that
there exist frames of reference in which the motion of the particle is described by
the differential equation

dp
—_—— = “ 13
F — =D, (1.3)
or
d
F= E(?ﬂv)' (1.4)

In most instances, the mass of the particle is constant and Eq. (1.4) reduces to

dv
F=m— = \
dr ma, (1.5)

where a 1s the vector acceleration of the particle defined by

d?r
a= a2 (1.6)

The equation of motion is thus a differential equation of second order, assuming
F does not depend on higher-order derivatives.



A reference frame in which Hq. (1.3) is valid is called an inertial or Galilean
system. Even within classical mechanics the notion of an inertial system is sorne-
thing of an idealization. In practice, however, it is usually feasibla ro sat u paco-
ordinate system that comes as close to the desired properties as may be required.
For many purposes, a reference frame fixed in Earth (thc “laboratory system”) is
a sufficient approximation to an inertial system, while for some astronotnical pur-
poscs it may be necessary to construct an inertial svstem by reference 1o distant
galuxies.

Many of the important conclusions of mechanics can be expressed in the form
of conservation thcarems, which indicatzs under what conditions various mechan-
1cal guantities are constant in (ime. Equation (1.3) directly furnishes the first of
these. the

Conservation Theorem for the Linear Momentum of a Particle: If the total Joree,
F. is zero, then p = 0 and the linear momentum, p, is conserved,

The angular momentum of tha particle about point (2, dencted by L, is defined
As

L=rxp, (1.7)

where r is the radius vector from O to the particle. Notice that the order of the
factors is important, We now define the moment of force or torgue ahout (7 as

N=rxF. (1.8)

The equation analogous (o (1.3) for N is obrained hy forming the cross product of
r with Eq. (1.4):

d .
er:N:rx{Fvaj_ (1,9
Equation (1.9) can be writien in a different form Hy using the vector identity:
d
i(r:sl: mV) =V X mv+Tx —(mv). (1.100
dt di

wher= the first term on the right obviously vanishes. In consequence of this iden-



tity. Eq. (1.Y) takes the form

N L 1L11)
__&rr(rx:wn}_dr_ ; (1.
Nata that hoth N and L depend on the point O, about whica the moments are
taken.

As was the case for Eq. (1.3), the tarque equation, (1.11), also yields an imme-
diate conservation theorent, this time the

Conservation Theovem for the Angular Momentum of a Particle: [f the total
torque, N, is zero then L = 0, and the anguior momentum L is conserved

Next corsider the work done by the axternal force F upon the particle in zoing
“rom point 1 to point 2. By definiticn, this work 15

2
Wiz = [ F - ds. (1.12)
J1

For constant mass (as will be assumed from now on unless otherwise specified),
the integral in Ey. (1.12) reduces to
fF d BT ema | 2wl
cdi=m | — = — | —(v)ar,
f it 2 | dr

and therelore

Wis = (i.'% - Lllij'}. {1.13)

The scalar quantity mv*/2 is called the kinetic energy of the particle and is Ce-
noted by T, so that the work done is equal 1o the change in the kinelic energy.

Wip=5 =T (1.14)

If the force field is such that the work Wiya is the same for any physically
passible path between points 1 and 2, then the foree (and the system] is said to be
conservative. An alternative description of a conservative system is ohfained hy
imagining the particle being taken from point | w point 2 by one possible path
amd then being retumed to point 1 by another path. The independence of W3 on



the particular path implies that the work done around such a closed circuit is zetv,

1.e.:

:”gFeds:{}. I

Physically it is clear that a system cannot be conservative if friction or other dis-
sipation forces are present, because F « ds due to friction is always positive and
the integral cannot vanish.

By a well-known theorem of vector analysis, a necessary and sufficient condi-
tion that the work, W1, be independent of the physical path taken by the particle
is that F be the gradient of some scalar function of position:

F=-VV({), (1.16)

where V is called the potential, or potential energy. The existence of V can be
inferred intuitively by a simple argument. If W1, is independent of the path of
integration between the end points 1 and 2, it should be possible to express W2
as the change in a quantity that depends only upon the positions of the end points.
This quantity may be designated by — V', so that for a differential path length we
have the relation

F-ds=—-4dV
or
av
Fo= ——,
s

which is equivalent to Eq. (1.16). Note that in Eq. (1.16) we can add to V any
quantity constant in space, without affecting the results. Hence the zero level of V
is arbitrary.

For a conservative system, the work done by the forces is

Wi =V = W, (1.17)
Combining Eq. (1.17) with Eq. (1.14), we have the result

I+ V=T 4+ Vs, (1.18)



which states in symbols the

Lnergy Conservation Theorem for a Particle: If the forces ucting on a particle
are conservative, then the iotal energy of the particle, T — V, is conserved.

The force applicd to a particle may in some circumstances be given by (he
gradient of 4 scalar function that depends explicitly on haoth the position of the
particle and the time. However, the work done on the particle when it travels a
distance ds,

A%
F.ds— ——ds,
)s
is then no longer the total chunge in —V during the displacement, since V also
changes explicitly with time as the particle moves. Hence, the work done as the

particle goes from point 1 (o poial 2 is no longer the difference in the function V
between those poinis. While a total energy T 4+ V may still he defined, it is not
conserved during the course of the particle’s motion.



B MECHAMNICS OF A SYSTEM OF PARTICLES

In generzlizing the ideus ol the previous section ro systems of many particles,
we must distinguish between the external forces acting on the particles due to
sources outside the svstem, end infernal forces on, say, some perticle i due to all
cther particles in the system. Thus, the equat:on of motion (Newton’s scecond law)
for the ith particle is writtsn 8

S Fu+EO =i (1L.19)
f

where FEEJ stands for an external force, and Fj; is the internal force on the ith
particlc duc to the jth particle (F;;, nawrally, is zero). We shzll assumne thal the
F;. (like the Fiﬁ}) obey Newton's third law of motion in its ariginal form: that the
torces two particles exert on 2ach other are equal and opposite. This assaraption
(which does not hold for all tvpes of forecs) is sontetimes referred 1o as the weak
law of action and reaction,

Summed over zll particles, Eq. (1.19) takes the [orm

dﬂ
e} \ -
qr2 D ik = ZFE + E Fii. (1.20)

:r .r.‘I.
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The first sum on the right is simply the total exiermnz force F, while the second
term vanishes, since the law of action and reaction states that each pair F;; +F
is sero. To reduce the Iefi-hard side, we define a vector R as the average of the
radii vectors of the particles, weighted in proportion to their mass:

(1.21)

The vector R defines a point known as the cenfer of mass, or more loosely as the
center of gravity, of the system (cof. Fig. 1.1). With this definition, (1.200) reduces
o

J*R ; i
i :ffl = Z Ff'c} = I, (1.22)
i

which stztes that the center of mass moves as if the total extermal ftoree werc
acting cn the entire mass of the system concentrated at the cenizr of mass. Purely
internal forces, it the obey Newton's third law, therefore have no effect on the



FIGURE 1.1 The center of mass of a system of particles.

motion of the center of mass. An oft-quoted example is the motion of an exploding
shell—the center of mass of the fragments traveling s if the shell werc still in a
single piece (neglecting air resistance). The same principle is involved in jet and
rocket propulsion. In order that the motion of the center of mass be unaffected,
the cjection of the exhaust gases at high velocily must be counterbalanced by the
forward motion of the vehicle al a slower velocity.

By Eq. (1.21) the total linear momentum of the system,

dr; dR
P= My — = M—, (1.23

Z dr U dr it
is the total mass of the system times the velocity of the center of mass. Conse-

quently, the equation of motion for the center of mass, (1.23), can be restared &s
the

Conservation Theorem for the Linear Momentum of u Sysiem of Purticles: If the
total external force is zero, the iotal Lineur momentum is conserved,



Wc obtain the total angular momentum of the system by forming the cross
product r, X p; and summing over 7. If this operation is performed in Eq. (1,19),
there results, with the aid of the identity, Rq. (1,107,

5 d'r - [ o !

Z(t‘; Ko ) = Z E{:[‘;‘ xpyr=ls Zl‘_,- X FFI + ZI‘; x Fi;. (1.24)
-’ E ; fl.?:f

The last term on the right in (1.24) can he considared a sum of the pairs of the

form

I xFp—ryx b= — rj)x F_rz: (1.25)

the action and reaction law.* Equations {1.23) and (1.26}, and their corresponding
conservation theorcms, arc not applicable in such cases, at least in the [orm eIven
here. Usually it is then possible 1o find some generalization of P or L that is
conserved. Thus, in an isclated svstem of moving charges it is the sum of the
mcchanical angular momentum and the electroinagnetic “zngular momaniim®™ af
the field thar is conserved.

Equation (1.23] states that the otal lincar mementum of the system is the saine
as 1f the entire mass were concentrated at the center of mass and moving with it
The analogous theorem for angular momentum is more complicated. With the
origin J as rcference point, the total angular momenturn ol the system is

k= Zr; X P
i

Let R be the radius vector [tTum O to the center of mass, and ler r; be the radins
vector from the center of mass to the ith particle. Then we have (cf. Fig. 1.3)

ri=r +R (1.27)
and
Vi — V. + v
where
_—
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FIGURE 1.3  The vectors involved :n the shift of reference point for the angular momen-
tuim.

*If rwo charges are moving nnifoemly with parallel ve.ocity veztors that are not perpendicular to the
hne: joiniag the charges, ther the net mutual furces are equal and opposite but do not lic aloag the
vector between the charges. Consider, further, two charges moving (instantaneously) su as Lo “cross
the T L.c., one charge moving directly at the wihier, whic in twm is moving at right angles o the first
Then the second charge exerts a nonvanishing magneric force on the first, withott exserercing any
magnefiz reaction force at that instart,

is the velocity of the center of mass relative to O, and
, dr.
vV, = —
o dt
is the velocity of the ith particle relative to the center of mass of the system. Using
Eq. (1.27), the total angular momentum takes on the form

L=Zern;v+Zr; X m;v; + 21%1[‘: xv+Rx %Zm;rj.

The last two terms in this expression vanish, for both contain the factor ) m;r},
which, it will be recognized, defines the radius vector of the center of mass in the
very coordinate system whose origin is the center of mass and is therefore a null
vector. Rewriting the remaining terms, the total angular momentum about O is

L=Rx Mv+) 1 xp]. (1.28)



In words, Eq. (1.28) says that the total angular momentum about a point O is
the angular momenmum of motion concentrated at the center of mass, plus the
angular momentum of motion about the center of mass. The form of Eq. (1.28)
emphasizes that in general L depends on the origin O, through the vector R. Only
if the center of mass is at rest with respeet to O will the angular momentum be
independent of the point of reference. In this case, the first term in (1.28) vanishes,
and L always reduces to the angular momentum taken about the center of mass.



B CONSTRAINTS

I'rom the previous sectivns one might obtain the impression that all problems in
mechanics have baan reduced o solving the set of differential equations (1,19):

1 F:ej + EF_,’E .
J

One merely subslitutes the varicus forces acting upon the particles of the system,
furas the mathematical crank, and grinds cut the answers! Even from a purely
[hysical standpoint, however, this view is oversimplified. For example, it may bz
necessary W lake into account the constrainis that limit the motior:, of the svstem.
We huve already met one type of system involving constraints, namely rigid bod-
ies, where the constraints on the motions of the particles keep the distances »;;
unchanged. Other examples of constrained systems can easily be furnished. The
beads of an abacus are constrained 1o cne-dimensional motion by the supporting
wires. Gas molecules within & container are constrained by the walls of the ves-
sel o move only inside the container. A particle placed on the surface of a sclid
sphere is subject to the constraint that it can move only on the surface or in the
region exterior to the sphere.

Constraints may be classified in various ways. and wc shall usc the following
system. If the conditions of consiraint can be expressed as cquations connecting
the coordinates of the particles (and possibly the time) having the form

AL o 0 ) R ) (1.37)

then the constraints arc said to be holonumic. Perhaps the simplest example of
holonomic constraints is the rigid body, where the constraints are expressed by
equations of the form

2 i
{1‘; —I'Jj LI:J' =}
A patticle constrained fo move along uny curve or on a given surface is another

obvious example of a holonomic constrain, with the equations defining the curve
or surface acting as the equations of a constraint,



Constraints not expressible in this fashion are called nonholonomic. ‘The walls
ol a gas container constiture a nonholonomic constraint. The constrzint involved
in the example ol a pardcle placed on the surface of a sphere is also nonholo-
nomic, for it can be expressed as an inequality

2 2
re—a" =

(where « is the radins of the sphere). which i3 not in the Zorm ol (1.37). Thus, i
a gravitationgl field a particle placed on the top of the sphere will slide down thz2
surface part of the wey but w1ll cventually fall off.

Constraints ars further classified according o whether the equations of con-
straint contain the time as an explicit variable (rhennnomous) nr are not explicitly
dependent on time {scleronomous). A bead sliding on a rigid curved wire fixed
in space s obviously subject to a scleronomous constraint; if the wirs is moving
in some prescribed fashion, the constraint is rheonomous. Note that if the wire
moves, 8ay, 28 a reaction to the bead’s motion, then the rime dependence of the
constraint enters in the equation of the constraint only through the coordinates
ol the curved wire {which are now part of the system coordinates). The overall
constraint is then scleronomaous.

Constraints introducs two types of difficulties in the solurion of mechanical
problems. First, the coordinates r; are no longer all independent, since they are
counecled by the equations of constraint; hence the equations of motion (1.19)
are not all indzpendent. Second, the forces of constraint, e.g., e furce that the
wire exarts on the bead {or the wall on the gas particle), is not furnished a pri-
ori, They arc among the unknowns of the problem and must be obtained from the
solution we seek. Indeed, iimposing constraints on the system is simply another
method of stating that there are forcas present in the prodlem that cannol be spec-
ified directly but are known rather in terms of their effect on the motion of the
system.

In the case of hulopomic constraints, the first difficulty is solved by the intro-
duction of generalized coovdinates. So far we have been thinking implicilly in
terms of Cartesian coordinates. A svstem of N particles, free from constraints,
has 3N independent coordinates or degrees of freedor. 1f there exist holonomic
constraints, expressed in & eguations in the form (1.37). then we may use these
equations to eliminate k of the 3N caordinates, and we are l2It with 3V — k inde-
pendent coordinates, and the system is said to have 3N — & degrees of freedom.



This eliminatior. of the dependent coordinates can be expressed in ancther way,

by the introduction of new, 3N — k, independent variables g1. g2, . ... gav—¢ i
terms of which the old coordinates r:, ra, ..., ry arz expressed by 2quations of
the form
L =11 G AN —ivT)
¢1.38)

ry =Iy(q1, g2, .- - s @3Nk £)

containing the constraints in them implicitly. These are fransformation equat.ons
from the set of (r)) variables to tha (g;) set, or alternatively Fqgs. (1.38) can be con-
sidered as parametric representations of the (r;) variables. It is always assumed
that we can also transform back from the (g;) to the (r;) set, 1.e., that Eqgs. (1.3%)
combincd with the & equations of constraint can be inverted to obtain any ¢; as a
functon of the (ry) variablc and time,

Usually the generalized coordinates, ¢y, unlike the Cartesian coordinates, will
not divide mnto convenient groups of three that can be associaled logether to form
vectors. Thus, in the case of a particle constrained to move on the surface of a
sphere, the two angles cxpressing position on the sphere, say latitude and longi-
tude, are obvious possible generalized coordinates. Or, in the example of a double
pendulum moving in a plane (two particles connccted by an inextensible light
rod and suspenced by u similar rod fastened to one of the particles), satisfactory
generalized coordinates are the two angles ¢, #>. (Cf. Fig. 1.4.) Generalized co-
ordinates, in the sense of coordinates other than Cartesian, are often uselul in
systems without constraints. Thus, in the problem of a particle TOVINZ 1N an ex-
ternal central force field (V' — V(r)), there is no constraint involved, but it s
clearly more conveniant to use spherical polar coordinates than Cartesian coordi-
nates. Do not, however, think of generalized coordinatcs in terms of conventional
arthogouzl pusition coordinates. All sorts of quantities may he impressad to serve
as generalized coordinates. Thus, the amplitudes in a Fourier expansicn of r; may
be used as generalized coordinates., or we may [ind it cenvenient to employ guan-
tities with the dimensions of energy or angular momentum.



If the constraint is nonholonomic, the equations expressing the consiraint can
nol be used to eliminate the dependent coordinates. An oft-quoted cxample of
a nonholonomic constraint is that of an object rolling on a rough surface with-
out slipping. The coordinates used to describe the system will generally involve
angular coordinales o specily the orientation of the body, plus a sat of coordi-
nates describing the Tocation of the point of contact on the surface. The constraint
of “rolling” connects these two sets of coordinates; they ars not independent. A
change in the position of the pcint of contact incvitably means a change in its
orientation. Yet we cannot reducce the number of coordinates, for the “rolling”
condition is not expressible as a equation belween (he coordinates. in the manner
ol (1.37). Rather. it is a condition on the velocities (i.e., the point o7 enntact is
stationary), a differential condirion that can be given in an integrated Zorm only
after the problem is solved.

0 x
FIGURE 1.4 Double pendulum. FIGURE L5 Vertical disk rolling on a horizontal plane.

A simple case will illustrate the point. Consider a disk rolling on the horizontal
xy plane constrained to move so that the plane of the disk is always vertical.
T'he coordinates used to describe the moticn mighrt be the x, v coordinates of the
center of the disk, an angle of rotation ¢ ahont the axis of the disk, and an angle
 between the axis of the disk and say, the x axis [cf. Fig 1.5). As a result of the



constraint the velocity of the center of the disk, v, has a magnitude proportional

to p,
v =ad,

where @ is the radius of the disk, and its direction is perpendicular to the &xis of

the disk:
¥ = vsink
v =—vcosf.
Combining these conditions, we have two differential equalions ol constrainl:

dx —asimfdgp — 0,
dy + acosddgd = 0.

1.39)

Ieither of Egs. (1.39) can be imtegrated without in fact solving the problem. i.e.,
we cannot find an integrating factor f(x, y, #. @) that will turn either of the equa-
tions into perfect differentials (cf. Derivation 4).* Hence, the constraints cannot
be reduced to the form of [q. (1.37) and are thercfore nonholonomic. Physically
we can see that there can be no direct functonal ra2lation betwesn ¢ and the other
coordinates x, v, and 9 by noting that at any point on its path the disk can be
mede to roll around in a circle tangent to the path and of arbitrary radius. At the
end of the process, r, v, and 6 have been returned to their original values, but ¢
has changed by an amourt depending on the radius of the circle.

Nonintegrable differential constraints of the form of Eqs. (1.39) are of course
no: the enly type of nonholonomic constraints. The constraint conditions may
invalve higher-order derivatives, or may appear in the form of inequalities, as we
have seen.

“In principle, an integrating factor cen alweys be found for a first-order differential equztion of con-
straint in systems involving only two coordinates and sich constrants are therefore holonomic, A
familiar example is the two-dimzns:onal metion of a circle rolling on an inclined plane.



Partly becanse the dependent coordinates can be eliminated, problems involv-
ing holonomic constraints ars always amenable to a formal solution. Bat there is
no general way to attack nonholonomic examplas. Trae, if the constraint is nonin-
tegrable, the differsntizl equations of constraint can be introducad into the prob
lem along with the differential equations of motion, and the dependent cquations
eliminated, in effect, bv the method of Lagrange multipliers,

We shall return Lo this method al a later point. However, the more viclous cases
of nonholoncmic constraint must be tackled individually, and consequently in the
development of the more formal aspects of classical mechanics, it is almost invari-
ably assumed that any constraint, if present, 1s holonomic. This restriction does
not greatly limit the zpplicability of the theory, despite the fact that many of the
constraints encountered in everyday life are nonholonomic, The reason is that the
entire concept of constraints imposed in the system through the medium of wires
or surfaces or walls is particularly appropriate only in macroscopic or largs-scale
probleins. Bul today physicists gre more inlerested m atomic dand nuclear prob-
lems. On this scale all objects, both in and out of the system, consist alike of
molecules, atoms, or smaller paricles, exerting definite forces, and the notion of
constraint becomes artificial and rarely appears. Constraints are then used only
ac mathemsztical idealizations to the actual physical case or as classical approxi-
mations ¢ a quantum-mechanical property, e.g.. rigid body rotations for “spin.”
Such constraints arc always hclonomic and fit smoothly into the framework of the
theory.

To surmount the second dilficulty, namely, thal the [orces of constraint are
unknown a priori, we should like to so formulate the mechanics that the forces
nf constraint disappear. We nead then deal only with the known applied forces. A
hint as to the procedure to be followed is provided by the ract that in a particular
system with constraints, i.2., arigid body, the work done by internal forces (which
are here the forces of constraint) vanishes. We shall follow up this clue in the
ensuing scctions and gercralize the ideas contained in it.



M D’ALEMBERT’S PRINCIPLE AND LAGRANGE'S EQUATIONS

A wvirtuel (infinitesimal) displacement cf a system refers to a change in the con-

fipurarion of the system ss the resulr of any arhitrary infinitesimal change ol the

coordinates 81, consisient wiih the forces amd constraings imposed on the svstem

al the giver insieni 1. The displacemcent is called virtual to distinguish it from an

actual displecement of the system occurring in a time interval d7, during which
the forces and constraints may be changing. Suppose the system is in equilibrium;
1.e., the total force nn each particle vanishes, F; = [). Then clearly the dot product
F; « 8r;, which is the virtual work of the force F; in the displacement &1y, also
venishes. The sum of these varushing products over all particles must likewise be
ZEro:

ZF;; A = 0. (1.40)

As yet nothing has been said thal has any new physical conienl. Decompose F;
mta the anphed force, ij”], and the foree of constramt, £

¥, = K 4 £, (1.41)
su that Eg. (1.40) becomes

Y F® .sr,4+ 3 F - ér =0, (1.42)

We now restrict ourselves to systems for which the net virtual work of the
Jorces of constraint is zero. We have seen that this condition holds true for ngid
bodies and it is valid for a large number of other constraints. Thus, if a particle 1s
constrained 1o move on a surface, the force of constramnt 1s perpendicular to the
surface, while the virtual displacement must be tangent to it, and hence the virtual
work vanishes, This (s no lonzer true if sliding friction forces are present, and
we must exclude such systems [Tom our formulation. The restriction is nol un-
duly hampering, since the friction is essentially a macroscopic phenomenon. On
the other hand, the forces of rolling friction do not violate this condition, since the
forces act on a point that is momentarily at rest and can do no work o an infinites-
imal displacement consistent with the rolling constraint. Note that if a particle is



constrained to a surface that s itself moving in time, the farce of constraint is
instantaneously perpendicular to the surface and the work during & virtual dis-
placement i3 still zero even though the work during an actual displacement in the
time d¢ docs not necessarily vanish.

We therefore have as the condition for equilibrium of a system that the virtual
wuork of the applied forces vanishes:

0 L (1.43)

Equation (1.43) is often called the principle of virtual work. Note that the coef-
ficients of r; can no longer be set equal to zero; 1.e., in general FI_;RJ' # 0, since
the ér; are not comnletely independent but are connected by the constrants. In
order to equate the coefficients to zern, we must transform the principle into a
form involving the virtual displacements of the g;. which are independent. Equa
tion (1.43) satisfics our nceds in that it docs not contain the f;, but it deals only
with statics; we want a condition involving the general motion of the system.

To obtain such a principle, we use a device first thought of by James Bernoulli
and developed by D' Alembert. The equetion of motion,

Fi =i
can be wrilten as
F; —pi=0.
which states that the particles in the system will be in equilibrium under a force
equal to the actual force plus a “raversed effective forec” —p;. Instead of (1.40),

we can immediately write

D F =) =0, (1.44)

and, makmg the same resolution into applied forces and forces of constraint, there
results

Y FE —pi s+ Y g - or; =0,

I I



We again restrict ourselves to systems for which the virtual work of the forces of
constraint varishes and therefore oblain

Z(F}"-’ —pi) -8 — 0, (1.43)

which 1s often called I’Alembert’s principle. We have achieved our aim, in that
the forces of constraint no longer appear, and the superseript ! can now be
dropped without ambiguity. It is still not in a useful form w (wnish eguations
of motion for the system. We must now rransform the principle into an expression
involving virtual displacements of the generzlized coordinates, which are then in
dependent of each other (for holonomic constraints’, so that the cocfficients of the
og; can be set separately equal to cerq,

The trenslation from r; to 4 ; langnage starts fram the transformation equations
(1.3%).

i =Yi(q1,92 ... G, {) (1.45')
(assuming » independent coordinates), and is carried out by means of the usual

“chain rules” of the calculus of partial differentiation. Thus, v, is expressed in
terms of the g by the formule

e = L L (1.40;

Similarly, the arbitrary virtual displacement dr; can be connected with the virlual
displacements 8g; by

orp =Y —L5q;. (L47)
J

Note that no variation of time, 5:, 1s involved here, since a virtual displacement
by definirion consicers only displacements of the coordinaies. (Only then is the
virtual displacement perpendicular to the force of constraint if the constraint itself
1s changing in time.)



In terms of the gensralized coordinates, the virtual work of the F; becomes

ar;
S Py =) F-—8
h;f R ¥ IZ i 04 )

=) 0Q;bq;, (1.48)
4
where the Q; are called the components of the generalized force, deflined as
7 R (1.49)
j ; : dyi .

Note that just as the ¢’s need not have the dimensions of length, so the Q’s do
not necessarily have the dimensions of force, but Q ;dg; must always have Lhe
dimensions of work. For example, ¢J; might bz a torque N; and dg; a d:fferential
angle df;, which makes N; d#; a differential of work,

We turnn now to the other cther term involved in Ec. (1.45), which may be
written as

Zﬁ{ '51"; — Em:i;j b SI'E.
i i

Expressing &xy by (1.47), tlus becomes

G o O
E ;L s - S Ag;.
Ig;

i,j o

Consider now the relation

52 EI'I";' S"-\ d ; 81’;‘ 2 cl ( Ea‘rr- ‘) ;
iFie = — | Wil » < S eaye—a] [l 1.50]
Zm » dg LE-“ [df [W & ) i dt \ dg; {

> q; aq

In the last term of Eq. {1.50) we can interchange the dillerentiation with respect
to 7 and g;. for, in analogy to [1.46),



d (arf- ) B | + &r;
: dg; T’E}L_ﬁﬂqﬁr% dg;di

dr \dq, | '
A
= Ef_;
by Eq. (1.46). Further, we also see from Eqg. (1.46) that
dv; or;

_— (1.31)
dqﬂ; d‘qj'

Substitution of these changes in (1.50) leads to the result that

L d { AT Iv;
i = = Vi I — ,
Z ' X;L: (m : ) S }

dq ~ 94 i

and the second term on the left-hand side of Eq. (1.45) can be expanded inta

3 d [ 3 . g Z'l o ,
ol f!‘ o Pirly = — E Ch L
.;'L‘" {aqi ( ; 2" L!,)] 9q; ( = ) Qj} QJ

I

Identilying > . —ém;uf with the system kinetic energy T, D' Alembert’s principle
(cf. BEq. (1.45)) becomes

d {aT"’ d1
Lot At \H{?)f 3&";‘ QJ &” 0 (152)

Note that in a svstem of Cartesian coordinates the partial derivative of T with
respect lo g; vanishes. Thus, speaking in the language of differential gzometry.
this term arises from the curvature of the coordinates g;. In polar coordinates,
e.g., it is in the partial derivative of T with respect to an angle coordinate that the
centripetal acceleration term appears.

Thus [ar, no restriciion has been made on the nature ol the constraints other
than that they be workless in a virtual displacement. The variables g; can be any
set of coordinates used to describe the motion of the systern. If, however. the con-
straints are holonomic. thea it is possible to find sets of independent coordinates
¢; that contain the constraint conditions implicitly in the ransformation equations



(1.38). Any virtual displacement 8¢ ; is then independent of dgx., and therefore the
only wzy for (1.52) 1o hold is for the individual coefficients to vanish:
d | 0T “) or

by = 2=y, (1.53)
aq g

dat \ 3g;

Thers are 1 such equations in all.
When the forces are derivable from a scalar potential function V|

F, =-V;V.

Then the generalized forces can be written as

I I

dg;

which is cxactly the same expression for the partial derivative of a function
—Viry.r2,...,ry, t) with respect to g ;:

AV
e (1.54)
Ui
Equations (1.53) can then be rewritten as
" ! '\" o ‘Ir
i(i I il £ WY (1.55)
dr \dq; A;

The =quaticns of maotion in the form (1.55) arc not ncecssarily restricted to conser-
vative systems: only il V' is not an explicit function of time is the system conserva-
tive (cf p.4). As here defined, the potential V' coes not depend on the generalized
velocities. Hence, we can include a term in V' in the partizl derivative with respect

7l (E.'(T—V']\) AT — V) _
di \  dg; dq;

d

(r, detining a new fuactior, the Lagrangian 1., as

P e A (1.56)



the Eqgs. (1.53) become

)
E(E o e (1.57)
dir \dg; ) Oq;
cxpressions referred to as “Lagrange’s equations.”

Note that for & particular et of eguations o7 motion there is no unique choice
of Lagrangian such that Egs. (1.57) lead to the equations of mation in the given
generalized coordinates. Thus, in Derivations 8 and 101t is shown that it Lig, g, 1)
is an epproximats Lagrangian and (g, t) is any differentizble function of the
generalized cnordinates and time, then

o ; aF oy

Lig.q.0=1L(g.g. D+ —— (1.579

15 & Lagrangian also resulting in the same eguations oI motion. It 15 also often

possible (v lind alternative Lagrangians beside those constructed by this prescrip-

tion (see Exercise 200). While FEq. (1.56) is always a suitable way 10 CONsiruct a

Lagrangian for a conservetive system, it does not provide the only Lagrangian
suitable for the ziven system.



