The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C) 1,4-bifunctional compounds:

The following is a summary of the retrosynthetic strategies one can commonly adopt when the target molecule contains two heteroatom-based functional groups placed at an 1,4-relation. These target molecules are dissonant systems, so umpolung strategy will be necessary.

1. \[R_1\text{CHO} \overset{1,4\text{-diCO}}{\xrightarrow{\text{Michael}}} R_1\text{CO} \overset{d^1}{\text{illogical}} + \overset{\alpha,\beta\text{-unsaturated carbonyl}}{\overset{a^3}{\text{CHO}}} \longrightarrow \text{Mannich or aldol as the case may be} \]

\[R_1\text{CO} \overset{\text{NO}_2}{\xrightarrow{\text{umpolung}}} + \text{Base} \]

1. Nitroalkane anions are excellent Michael donors
2. Demasking nitro to carbonyl by McMurry reaction, TiCl_3, H_2O

2. \[R_1\text{CH}_2\text{OH} \overset{\text{FGI}}{\xrightarrow{\text{1,3 C-C}}} R_1\text{CHO} \overset{d^1}{\text{illogical}} + R_1\text{C} \overset{a^3}{\text{CN}} \]

4-ketoacid TM

3. \[R_1\text{CHO} \overset{\text{FGI}}{\xrightarrow{\text{1,4-diX}}} R_1\text{CHO} \overset{\text{NO}_2}{\xrightarrow{\text{Henry}}} R_1\text{CO} \overset{d^2}{\text{illogical}} + \overset{\text{1,3-diCO}}{\overset{\text{CO}_2\text{Et}}{\text{CO}_2\text{Et}}} \]

\[\text{NO}_2 + \overset{\text{EtO}}{R_1\text{CH}_2\text{O}} \overset{\text{Base}}{\xrightarrow{\text{Henry}}} \overset{\text{Me}}{R_2} \]

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C] 1,4-bifunctional compounds (contd.):

The following is a summary of the retrosynthetic strategies one can commonly adopt when the target molecule contains two heteroatom-based functional groups placed at an 1,4-relation. These target molecules are dissonant systems, so umpolung strategy will be necessary.

\[
\begin{align*}
R_1\text{C=O} &\xrightarrow{\text{halogenation at the}} R_1\text{C=O} + X\text{R}_2 \\
\text{R}_2 &\xrightarrow{\text{umpolung}} X + \text{R}_2\text{C}=\text{O}
\end{align*}
\]

- Halogenation at the \(\alpha\)-position may include regioselectivity issue.
- Specific enol equivalent is needed for the \(d^2\) syntho; otherwise Darzen's reaction would take over.

Desired outcome:

Possible side reaction:

To minimise this, we must reduce the basicity of the enolate; we need specific enol equivalents.

\[
\begin{align*}
\text{R}_1\text{C}=\text{O} + \text{R}_2\text{C}=\text{O} &\xrightarrow{\text{enolate acting as}} \text{O}\text{R}_1\text{C}=\text{O} + \text{R}_2\text{C}=\text{O} \\
\text{R}_2 &\xrightarrow{\text{enolate acting as}} \text{O}\text{OH} + \text{BrR}_2
\end{align*}
\]

Glycidic ester

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C] 1,4-bifunctional compounds (contd.):

The following is a summary of the retrosynthetic strategies one can commonly adopt when the target molecule contains two heteroatom-based functional groups placed at an 1,4-relation. These target molecules are dissonant systems, so umpolung strategy will be necessary.

5. symmetrical 1,4-dicarbonyl target
 - FGA
 - NaOEt (2 eqv.s)
 - I₂ (1 eqv.)
 - 1,4-diCO
 - a² component generated in situ
 - α-halocarbonyl derived from the same ketoester
 - NaOEt

6. 1,4-dio
 - FGI
 - 1,4-diO
 - a² component generated illogically
 - Wittig or related
 - Corey-Chaykovsky
 - umpolung

7. addition (Markovnikov regioselectivity)
 - 1,2 C-C
 - X

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C] 1,4-bifunctional compounds (contd.):

The following is a summary of the retrosynthetic strategies one can commonly adopt when the target molecule contains two heteroatom-based functional groups placed at an 1,4-relation. These target molecules are dissonant systems, so umpolung strategy will be necessary.

8. $\text{Me} \quad \text{O} \quad \text{Me}$
 $\text{R}_1 \quad \text{O} \quad \text{R}_1$
 \[\begin{align*}
 &\xrightarrow{\text{FGI, hydration (Markovnikov regioselectivity)}} \quad \xrightarrow{\text{1,2 C-C}} \\
 \text{1,4-dicarboxyl TM, one side is ketomethyl}
 \end{align*} \]

9. $\text{OH} \quad \text{OH}$
 $\text{R}_1 \quad \text{OH} \quad \text{R}_2$
 \[\begin{align*}
 &\xrightarrow{\text{FGA or FGI, reduction}} \quad \xrightarrow{\text{H-O-C-C}} \\
 \text{1,4-diol TM}
 \end{align*} \]

Note:

- adding a triple bond - in that sense we can call this transform a functional group addition (FGA)
- The C-C can be accessed by reducing a triple bond - in that sense we can call this transform a functional group interconversion (FGI).
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C] 1,4-bifunctional compounds (contd.):

Let us now consider a few examples:

1. **α,β-unsaturated cyclic ketone**

 1,4-diketo TM - unsymmetrical

 \[\alpha,\beta \rightarrow \text{1,4-diCO} \]

 Condensation regioselectivity guided by formation of the more substituted C=C

2. Enamines react particularly well with SN2 reactive electrophiles

 (activation required for this d^2 synthet)

 Br\text{et} \rightarrow \text{BrCOEt} \rightarrow \text{BrCO} \rightarrow \text{BrOH} \rightarrow \text{BrH}

 H-V-Z umpolung + Br_2

 tetrasubstituted C=C, more favoured

 trisubstituted C=C, less favoured
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C) 1,4-bifunctional compounds (contd.):

Let us now consider a few examples:

3. \[
\begin{align*}
\text{CO}_2\text{Et} & \xrightarrow{\alpha,\beta} \text{CO}_2\text{Et} & \xrightarrow{1,4\text{-diCO}} & \text{CO}_2\text{Et} & \equiv & \text{Br} \\
\end{align*}
\]

need to install the Br at the less subst. side of the ketone, synthesis not straightforward.

For halogenation, we can’t use
i) base - haloform!
ii) acid - Br incorporated on the more substituted side!

How to solve this regioselectivity issue?

* Solutions to the regioselectivity problem:

i) \[
\begin{align*}
\text{H} & \xrightarrow{1. \text{NaH}} \text{H} & \xrightarrow{2. \text{BuLi}} & \text{EAA diantion} \\
\text{less acidic proton} & \text{more acidic proton} & \text{Weiler alkylation strategy} & \text{(more reactive site of the dianion gets alkylated first, last-out-first-in!)} & \text{aq. acid work up}
\end{align*}
\]

bromination via:

ii) \[
\begin{align*}
\text{LDA, THF, I.t.} & \xrightarrow{\text{MeSiCl}} \text{OTMS} & \xrightarrow{\text{Br}_2} \text{Br} \\
\text{kinetic enolate formation} & \text{(mechanism?!)}
\end{align*}
\]

(This one is most interesting of the lot and as expected, has the most intricate mechanism. Try it; start just as you would for a Hg(II)-catalysed hydration of alkyne and then proceed from there.)
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C) 1,4-bifunctional compounds (contd.):

Let us now consider a few examples:

4. $\text{RCO}_2\text{H} \xrightarrow{1,4\text{-diO}} \text{RCO}_2\text{H} + \text{RCO}_2\text{H} \equiv \text{RCO}_2\text{H} + \text{RCO}_2\text{H}

\text{NO}_2 \quad \text{X} \quad \text{NaOMe} \quad \text{NaNO}_2

\text{enamine will not form from the more substituted side.}

5. $\text{(racemic) CO}_2\text{H} \xrightarrow{1,4\text{-diO}} \text{CO}_2\text{H} + \text{H}_2\text{C-CO}_2\text{H} \equiv \text{CO}_2\text{Et} \quad \text{NaOE}_t

\text{FGI oxidation}

\text{epoxide ring-opening is in } \text{trans}-\text{orientation}

6. $\text{R-CO}\text{-Br} \xrightarrow{\text{FGI}} \text{R-CO}\text{-OH} \xrightarrow{1,4\text{-diO}} \text{R-CO}\text{OH} + \text{R-CO}\text{H} \equiv \text{R-CO}\text{OH} + \text{R-CO}\text{H}

\text{TM}

\text{Using EAA route we have the following observation:}

$\text{RCO}_2\text{Et} \xrightarrow{1. \text{NaOE}_t} \text{RCO}_2\text{Et} \xrightarrow{2. \text{in situ cyclisation}} \text{RCO}_2\text{Et}$

$\text{R-CO}\text{-Br} \xrightarrow{\text{HBr}} \text{RCO}_2\text{Et}$

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C] 1,4-bifunctional compounds (contd.):

Let us now consider a few examples:

7. \[\text{Ph} - \text{COOH} \stackrel{FGI}{\longrightarrow} \text{Ph} - \text{CN} \stackrel{1,4-diX}{\longrightarrow} \text{Ph} - \text{COOH} + \text{CN} \]

- \(\alpha,\beta \)reiben
- \(\text{Ph} - \text{COH} + \text{H}_2\text{C} - \text{COOH} \]
- \(\text{H}_2\text{C} - \text{COOH} \)
- \(\text{NaOAc} \)

conjugate addition of cyanide is inevitable as it cannot add to COOH.

Use Perkin or Knoevenagel to access aromatic \(\alpha,\beta \)-unsaturated acid

8. \[\text{cyclohexane} \stackrel{\alpha,\beta}{\longrightarrow} \text{cyclohexane} \]

- \(\text{a} \)
- \(\text{b} \)
- \(\text{1,4-diCO} \)

- \(\text{1-nitrocyclohex-1-ene} \)
- a Michael acceptor

- NO\(_2\) demasked via McMurry reaction

Study Guide to Organic Chemistry

- Saha et al. Volume 5 (ISBN 9788193853085)
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C) 1,4-bifunctional compounds (contd.)

Let us now consider a few examples:

9.
\[
\begin{align*}
\text{CO}_2\text{Et} & \quad \text{CO}_2\text{Et} \\
\text{CHO} & \quad \text{CHO} \\
\text{EtO}_2\text{C} & \quad \text{Me}
\end{align*}
\]

1,4-diCO

symmetrical 1,4-diketone

10.
\[
\begin{align*}
\text{CO}_2\text{Et} & \quad \text{CO}_2\text{Et} \\
\text{CO}_2\text{Et} & \quad \text{CO}_2\text{Et} \\
\text{NaOEt} & \quad \text{NaOEt} \\
\text{I}_2 (1 \text{ eqv.}) & \quad \text{I}_2 (1 \text{ eqv.}) \\
\text{NaOEt} (2 \text{ eqv.}) & \quad \text{NaOEt} (2 \text{ eqv.})
\end{align*}
\]

hydrolysis and decarboxylation

One of the strategies used here is quite unique - the ozonolysis of a C=C to install a C=O group. In terms of retrosynthesis, this implies replacing a =O with =CH_2. That's not a disconnection \textit{per se}. When this analysis is carried out to approach the dicarbonyl target, we are in fact using the reverse of a disconnection - we are joining up a bond in the revised target which will be broken during the synthesis.

This is called the strategy of reconnection.

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C] 1,4-bifunctional compounds (contd.):

Oxidative cleavage of a C=C provides a useful route to 1,4-dicarbonyl targets. Here's another example of this concept at work:

11. \[\text{CO}_2\text{Et} \quad \text{CHO} \quad \text{Br} \quad \text{CHO} \]

\[\text{ CO}_2\text{Et} \quad \text{H}_2\text{C} \quad \text{CHO} \quad \text{Br} \quad \text{CHO} \]

\[\alpha\text{-haloaldehyde very difficult to handle} \]

\[\text{ extremely reactive} \]

\[^* \text{ to stop the ozonolysis of the C=C at the aldehyde stage, we need a reductive work-up, use dimethyl sulfide} \]

12. \[\text{Ph CO}_2\text{O} \quad \text{\gamma-lactone} \]

\[\text{CO}_2\text{H} \quad \text{\gamma-hydroxyacid} \]

\[\text{OH} \quad \text{hydrolysis} \quad \text{substitution} \]

\[\text{Ph} \quad \text{Br} \quad \text{Markovnikov regioselectivity} \]

\[\text{Ph} \quad \text{1,2 C-C} \]

Study Guide to Organic Chemistry
- Saha et al. Volume 5 (ISBN 9788193853085)
The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C] 1,4-bifunctional compounds (contd.):

Let us now consider a few examples:

13. \(\gamma \)-lactone \[\xrightarrow{\text{C-O lactone}} \] \(\gamma \)-hydroxyacid \[\xrightarrow{\text{FGI reduction}} \] 1,4-dioxygenated TM \[\xrightarrow{\text{H-O-C-C \ + \ base}} \] CO\(_2\) + H\(_2\)C\(-\)C\(_{\text{=O}}\)

14. [levulinic acid, a \(\gamma \)-ketoacid aka 4-oxopentanoic acid] \[\xrightarrow{1,4\text{-diCO}} \] acetyl cation \[+ \] acetyl anion \[\xrightarrow{\text{CO\(_2\)Et + NaOEt}} \] CO\(_2\)Et \[+ \] NaOEt

[1,2 diX] \(\xrightarrow{\text{Br}} \) \(\xrightarrow{\text{Br}_2} \)

bromination in AcOH to access the \(\alpha \)-bromoacetone

15. [using Ivanov enolates derived from carboxylic acids] \[\xrightarrow{1,2 \text{-C-C}} \] COOH \[\xrightarrow{\text{LDA (2 eqv.)}} \] \(\text{H-O-C-C \ + \ Henry} \)

\[\xrightarrow{\text{LDA (2 eqv.)}} \] \(\text{H-O-C-C \ + \ base} \)

nitro demasking with McMurry reaction

The Logic of Organic Synthesis: Analysis of bifunctional target molecules:

C] 1,4-bifunctional compounds (contd.):

And finally, let us revisit a 1,4-dicarbonyl target once more. Again we use the d¹+a³ combination, but this time, our acyl anion equivalent is different from the one derived from nitroalkanes:

16. \[
\begin{align*}
\text{Ph} & \quad \text{CO} \quad \text{Ph} \\
\text{Ph} & \quad \text{CO} \\
\end{align*}
\]

\[
\xrightarrow{1,4-\text{diCO}}
\]

\[
\begin{align*}
\text{Ph} & \quad \text{CO} \quad \text{Ph} \\
\text{Ph} & \quad \text{CO} \\
\text{H} & \quad \text{OH} \\
\text{Ph} & \quad \text{CN} \\
\text{Ph} & \quad \text{CO} \quad \text{Ph} \\
\text{Ph} & \quad \text{CO} \\
\text{Ph} & \quad \text{H} \\
\text{Ph} & \quad \text{CN} \\
\text{NaCN} & \quad \text{NaOH} \\
\end{align*}
\]

This is the Stetter reaction (mechanism?), using the cyanohydrin derived from the aromatic aldehyde as the umpoled reagent, an acyl anion equivalent. Possible side reaction is benzoin condensation which is reversible, so not a threat.

Try these yourself:

[C.1] \[
\begin{align*}
\text{CH}_2\text{CO}_2\text{H} \\
\end{align*}
\]
(two separate methods, other than the one shown)

[C.2] \[
\begin{align*}
\text{HO} & \quad \text{CH}_3\text{OH} \\
\end{align*}
\]

[C.3] \[
\begin{align*}
\text{C} & \quad \text{O} \\
\end{align*}
\]
(other than the methods shown)

[C.4] \[
\begin{align*}
\text{Me} & \quad \text{C} \quad \text{O} \\
\end{align*}
\]

[C.5] \[
\begin{align*}
\text{C} & \quad \text{O} \\
\end{align*}
\]

[C.6] \[
\begin{align*}
\text{C} & \quad \text{O} \quad \text{CO}_2\text{Et} \\
\end{align*}
\]

(C.7) \[
\begin{align*}
\text{HOOC} & \quad \text{CH}_2\text{CH}_2\text{OH} \\
\end{align*}
\]

(C.8) \[
\begin{align*}
\text{CO} & \quad \text{CH}_3\text{Br} \\
\end{align*}
\]

(C.9) \[
\begin{align*}
\text{C} & \quad \text{O} \quad \text{Ph} \\
\end{align*}
\]

(C.10) \[
\begin{align*}
\text{C} & \quad \text{O} \\
\end{align*}
\]

(C.11) \[
\begin{align*}
\text{MeO}_2\text{C} & \quad \text{CH}_2\text{CO}_2\text{Me} \\
\end{align*}
\]